Skip to main content

Advertisement

Log in

Differentiation of prostate epithelial cellcultures by materigel/stromal cell glandular reconstruction

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Three-dimensional epithelial culture models are widely used to emulate a more physiologically relevant microenvironment for the study of genes and signaling pathways. Prostate epithelial cells can grow into solid cell masses or acinus-like spheroids in Matrigel. To test if the ability to form acinus-like spheroids in Matrigel is dependent on how undifferentiated a cell is or whether it is tumor or nontumor, we established six novel epithelial cell lines. Primary prostate epithelial cells were immortalized using HPV16 E6 gene transduction and were named Shmac 2, 3, and 6 (nontumor); Shmac 4, Shmac 5, and P4E6 (tumor). All cell lines were phenotyped in monolayer culture, and their ability to form acinus-like spheroids in Matrigel investigated. The cell lines exhibited a wide range of population doubling times and all showed an intermediate phenotype in nonolayer culture (luminalCK+/basalCK+/CD44+/PSA+/AR). Only Shmac 5 cells formed acinus-like spheroids when cultured in Matrigel. Co-culture of the spheroids with fibroblasts advanced differentiation by inducing androgen receptor expression and epithelial polarization. Our findings indicate that tumor cells can form acinus-like spheroids in Matrigel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, V. L.; Jackson-Cook, C. K.; Maygarden, S. J.; Plymate, S. R.; Chen, J.; Ware, J. L. Metastatic sublines of an SV40 large T antigen immortalized human prostate epithelial cell line. Prostate 34:275–282; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Barcellos-Hoff, M. H.; Aggeler, J.; Ram, T. G.; Bissell, M. J. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235; 1989.

    PubMed  CAS  Google Scholar 

  • Bayne, C. W.; Donnelly, F.; Chapman, K.; Bollina, P.; Buck, C.; Habib, F. K. A novel coculture model for benign prostatic hyperplasia expressing both isoforms of 5a-reductase. J. Clin. Endocrinol. Metab. 83:206–213; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bello-DeOcampo, D.; Kleinman, H. K.; Webber, M. M. The role of α6β1 integrin and EGF in normal and malignant acinar morphogenesis of human prostatic epithelial cells. Mutat. Res. 480–481:209–217; 2001.

    PubMed  Google Scholar 

  • Bemis, L. T.; Schedin, P. Reproductive state of rat mammary gland stroma modulates human breast cancer cell migration and invasion. Cancer Res. 60:3414–3418; 2000.

    PubMed  CAS  Google Scholar 

  • Collins, A. T.; Habib, F. K.; Maitland, N. J.; Neal, D. E. Identification and isolation of human prostate epithelial stem cells based on α2β1-integrin expression. J. Cell Sci. 114:3865–3872; 2001.

    PubMed  CAS  Google Scholar 

  • Darcy, K. M.; Zangani, D.; Shea-Eaton, W., et al. Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells. In Vitro Cell. Dev. Biol. 36A:578–592; 2000.

    Google Scholar 

  • Debnath, J.; Muthuswamy, S. K.; Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. A.; Maitland, N. J.; Stower, M.; Lang, S. H. Primary prostate stromal cells modulate the morphology and migration of primary prostate epithelial cells in Type 1 collagen gels. Cancer Res. 62:58–62; 2002.

    PubMed  CAS  Google Scholar 

  • Jones, P. H.; Harper, S.; Watt, F. M. Stem cell patterning and fate in human epidermis. Cell 80:83–93; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Lang, S. H.; Hyde, C.; Reid, I. N.; Hitchcock, I. S.; Hart, C. A.; Bryden, A. A. G.; Villette, J.-M.; Stower, M. J.; Maitland, N. J. Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate cancer. Prostate 52:253–263; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lang, S. H.; Sharrard, R. M.; Stark, M.; Villette, J. M.; Maitland, N. J. Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. Br. J. Cancer 85:590–599; 2001a.

    Article  PubMed  CAS  Google Scholar 

  • Lang, S. H.; Stark, M.; Collins, A.; Paul, A. B.; Stower, M. J.; Maitland, N. J. Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional matrigel culture. Cell Growth Differ. 12:631–640; 2001b.

    PubMed  CAS  Google Scholar 

  • Liu, A. Y.; True, L. D.; LaTray, L., et al. Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc. Natl. Acad. Sci. USA 94:10705–10710; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Maitland, N. J.; Macintosh, C. A.; Hall, J.; Sharrard, M.; Quinn, G.; Lang, S. In vitro models to study cellular differentiation and function in human prostate cancers. Radiat. Res. 155:133–142; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Maitland, N. J.; Macintosh, C. A.; Schmitz, C.; Lang, S. Immortalisation of human prostate cells with the human papillomavirus type 16 E6 gene. In: Langdon, S., ed. Cancer cell culture. Totowa, New Jersey: The Human Press; 2004:275–285.

    Google Scholar 

  • Mitchell, S.; Abel, P.; Ware, M.; Stamp, G.; Lalani, E. N. Phenotypic and genotypic characterization of commonly used human prostatic cell lines. BJU Int. 85:932–944; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Muthuswamy, S. K.; Li, D.; Lelievre, S.; Bissell, M. J.; Brugge, J. S. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat. Cell Biol. 3:785–792; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Niemann, C.; Brinkmann, V.; Spitzer, E.; Hartmann, G.; Sachs, M.; Naundorf, H.; Birchmeier, W. Reconstitution of mammary gland development in vitro: requirement of c-met and c-erbB2 signaling for branching and alveolar morphogenesis. J. Cell Biol. 143:533–545; 1998.

    Article  PubMed  CAS  Google Scholar 

  • O'Brien, L. C.; Zegers, M. M. P.; Mostov, K. E. Building epithelial architecture insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3:531–537; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Park, C. C.; Zhang, H.; Pallavicini, M.; Gray, J. W.; Baehner, F.; Park, C. J.; Bissel, M. J. β1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res. 66:1526–1535; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, G. D.; Robson, C. N.; Lang, S. H.; Neal, D. E.; Maitland, N. J.; Collins, A. T. CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci. 117:3539–3545; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, E. J.; Neal, D. E.; Collins, A. T. Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37:149–160; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, T. S.; Stewart, T.; Lehr, J.; Pienta, K. J.; Rhim, J. S.; Macoska, J. A. Phenotypic characterization of immortalized normal and primary tumor-derived human prostate epithelial cell cultures. Prostate 44:164–171; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sherwood, E. R.; Theyer G.; Steiner, G.; Berg, L. A.; Kozlowski, J. M.; Lee, C. Differential expression of specific cytokeratin polypeptides in the basal and luminal epithelia of the human prostate. Prostate 18:303–314; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Sommers, C. L.; Byers, S. W.; Thompson, E. W.; Torri, J. A.; Gelmann, E. P. Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res. Treatment 31:325–335; 1994.

    Article  CAS  Google Scholar 

  • Van Leenders, G.; Dijkman, H.; Hulsbergen-van de Kaa, C.; Ruiter, D.; Schalken, J. Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab. Invest. 80:1251–1258; 2000.

    Article  PubMed  Google Scholar 

  • Varani, J.; Hattori, Y.; Dame, M. K.; Schmidt, T.; Murphy, H. S.; Johnson, K. J.; Wojno, K. J. Matrix metalloproteinases (MMPs) in fresh human prostate tumor tissue and organ cultured prostate tissue: levels of collagenolytic and gelatinolytic MMPs are low, variable and different in fresh tissue versus organ-cultured tissue. Br. J. Cancer 84:1076–1083; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Webber, M. M.; Bello, D.; Kleinman, H. K.; Hoffman, M. P. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18:1225–1231; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Webber, M. M.; Quader, S. T. A.; Kleinman, H. K.; Bello-Deocampo, D.; Storto, P. D.; Bice, G.; DeMendonca-Calaca, W.; Williams, D. E. Human cell lines as an invitro/in vivo model for prostate carcinogenesis and progression. Prostate 47:1–13; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wernert, W.; Seitz, G. Immunohistochemical investigation of different cytokeratins and Vimentin in the prostate from the fetal period up to adulthood and in prostate carcinoma. Path. Res. Pract. 182:617–626; 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shona H. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, S.H., Smith, J., Hyde, C. et al. Differentiation of prostate epithelial cellcultures by materigel/stromal cell glandular reconstruction. In Vitro Cell.Dev.Biol.-Animal 42, 273–280 (2006). https://doi.org/10.1290/0511080.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0511080.1

Key words

Navigation