Taste receptor T1R3 is an essential molecule for the cellular recognition of the disaccharide trehalose

  • Toshio AriyasuEmail author
  • Shuji Matsumoto
  • Fumiyo Kyono
  • Toshiharu Hanaya
  • Shigeyuki Arai
  • Masao Ikeda
  • Masashi Kurimoto
Articles Cell and Tissue Models


Recently, a sweet taste receptor family, the T1R family, that recognizes some carbohydrates including sucrose was identified. Although the T1R3 molecule is known to participate in heterodimers that are used as sweet- and umamitasting receptors, there is no evidence that T1R3 alone recognizes similar ligands. We demonstrate for the first time that the candidate sweet taste receptor T1R3 is essential for the recognition and response to the disaccharide trehalose. Our system is a valuable tool not only for understanding the relationship between sweeteners and their receptors but also for exploring the diversities of their receptors, resulting in the design of new high-potency sweeteners.

Key words

T1Rs sweetener carbohydrates intracellular calcium G protein-coupled receptors 


  1. Arai, C.; Kohguchi, M.; Akamatsu, S., et al. Trehalose suppresses lipopolysaccharide-induced osteoclastogenesis in mouse bone marrows. Nutr. Res. 21:993–999; 2001.PubMedCrossRefGoogle Scholar
  2. Ariyasu, T.; Arai, C.; Yoshizane, C., et al. Trehalose augments osteoprotegerin production in the FHs74Int human intestinal epithelial cell line. In Vitro Cell. Dev. Biol. 38A:30–34; 2002.CrossRefGoogle Scholar
  3. Baker, E. K.; Colley, N. J.; Zuker, C. S.. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J. 13:4886–4895; 1994.PubMedGoogle Scholar
  4. Capeless, C. G.; Whitney, G.. The genetic basis of preference for sweet substances among inbred strains of mice: preference ratio phenotypes and the alleles of the Sac and dpa loci. Chem. Senses 20:291–298; 1995.PubMedCrossRefGoogle Scholar
  5. Chandrashekar, J.; Mueller, K. L.; Hoon, M. A., et al. T2Rs function as bitter taste receptors. Cell 100:703–711; 2000.PubMedCrossRefGoogle Scholar
  6. Clapham, D. E.. Calcium signaling. Cell 80:259–268; 1995.PubMedCrossRefGoogle Scholar
  7. Colaco, C.; Sen, S.; Thangavelu, M., et al. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Bio/Technology 10:1007–1011; 1992.PubMedCrossRefGoogle Scholar
  8. Draber, P.; Fraberova, E.; Novakova, M. Stability of monoclonal IgM antibodies freeze-dried in the presence of trehalose. J. Immunol. Methods 181:37–43; 1995.PubMedCrossRefGoogle Scholar
  9. Dwyer, N. D.; Troemel, E. R.; Sengupta, P., et al. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 93:455–466; 1998.PubMedCrossRefGoogle Scholar
  10. Elbein, A. D.. The metabolism of α,α-trehalose. In: Tipson, R. S.; Horton, D., ed. Advances in carbohydrate chemistry and biochemistry. Vol. 30. New York: Academic Press; 1974:227–256.Google Scholar
  11. Eroglu, A.; Russo, M. J.; Bieganski, R., et al. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18:163–167; 2000.PubMedCrossRefGoogle Scholar
  12. Firestein, S. How the olfactory system makes sense of scents. Nature 413:211–218; 2001.PubMedCrossRefGoogle Scholar
  13. Fuller, J. L. Single-locus control of saccharin preference in mice. J. Hered. 65:33–36; 1974.PubMedGoogle Scholar
  14. Guo, N.; Puhlev, I.; Brown, D. R., et al. Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 18:168–171; 2000.PubMedCrossRefGoogle Scholar
  15. Harkins, A. B.; Kurebayashi, N.; Baylor, S. M.. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys. J. 65:865–881; 1993.PubMedCrossRefGoogle Scholar
  16. Ishimoto, H.; Matsumoto, A.; Tanimura, T. Molecular identification of a taste receptor gene for trehalose in Drosophila. Science 289:116–119; 2000.PubMedCrossRefGoogle Scholar
  17. Kerper, L. E.; Hinkle, P. M. Cellular uptake of lead is activated by depletion of intracellular calcium stores. J. Biol. Chem. 272:8346–8352; 1997.PubMedCrossRefGoogle Scholar
  18. Kitagawa, M.; Kusakabe, Y.; Miura, H., et al.. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem. Biophys. Res. Commun. 283:236–242; 2001.PubMedCrossRefGoogle Scholar
  19. Krautwurst, D.; Yau, K.-W.; Reed, R. R.. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95:917–926; 1998.PubMedCrossRefGoogle Scholar
  20. Li, X.; Staszewski, L.; Xu, H., et al. Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. USA 99:4692–4696; 2002.PubMedCrossRefGoogle Scholar
  21. Lindemann, B. Receptors and transduction in taste. Nature 413:219–225; 2001.PubMedCrossRefGoogle Scholar
  22. Lush, I. E.. The genetics of tasting in mice VI. Saccharin, acesulfame, dulcin and sucrose. Genet. Res. 53:95–99; 1989.PubMedCrossRefGoogle Scholar
  23. Max, M.; Shanker, Y. G.; Huang, L., et al. Tas1r3, encoding a new candidate receptor, is allelic to the sweet responsiveness locus Sac. Nat. Genet. 28:58–63; 2001.PubMedCrossRefGoogle Scholar
  24. Minta, A.; Kao, J. P. Y.; Tsien, R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264:8171–8178; 1989.PubMedGoogle Scholar
  25. Mody, S. M.; Ho, M. K.; Joshi, S. A., et al. Incorporation of GαZ-specific sequence at the carboxyl terminus increases the promiscuity of Gα16 toward Gi-coupled receptors. Mol. Pharmacol. 57:13–23; 2000.PubMedGoogle Scholar
  26. Montmayeur, J.-P.; Liberles, S. D.; Matsunami, H., et al. A candidate taste receptor gene near a sweet taste locus. Nat. Neurosci. 4:492–498; 2000.Google Scholar
  27. Nelson, G.; Chandrashekar, J.; Hoon, M. A., et al. An amino-acid taste receptor. Nature 416:199–202; 2002.PubMedCrossRefGoogle Scholar
  28. Nelson, G.; Hoon, M. A.; Chandrashekar, J., et al. Mammalian sweet taste receptors. Cell 106:381–390; 2001.PubMedCrossRefGoogle Scholar
  29. Nishizaki, Y.; Yoshizane, C.; Toshimori, Y., et al. Disaccharide-trehalose inhibits bone resorption in ovariectomized mice. Nutr. Res. 20:653–664; 2000.CrossRefGoogle Scholar
  30. Offermanns, S.; Simon, M. I. Gα15 and Gα16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem. 270:15175–15180; 1995.PubMedCrossRefGoogle Scholar
  31. Portmann, M.-O.; Birch, G.. Sweet taste and solution properties of α,α-trehalose. J. Sci. Food Agric. 69:275–281; 1995.CrossRefGoogle Scholar
  32. Sainz, E.; Korley, J. N.; Battey, J. F., et al. Identification of a novel member of the T1R family of putative taste receptors. J. Neurochem. 77:896–903; 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2003

Authors and Affiliations

  • Toshio Ariyasu
    • 1
    Email author
  • Shuji Matsumoto
    • 1
  • Fumiyo Kyono
    • 1
  • Toshiharu Hanaya
    • 1
  • Shigeyuki Arai
    • 1
  • Masao Ikeda
    • 1
  • Masashi Kurimoto
    • 1
  1. 1.Fujisaki InstituteHayashibara Biochemical Laboratories, Inc.OkayamaJapan

Personalised recommendations