Modulation of adipocyte determination and differentiation-dependent factor 1 by selected polyunsaturated fatty acids

  • Shih-Torng Ding
  • Ronald L. McNeel
  • Harry J. Mersmann
Articles Cell Growth/Differentiation/Apoptosis


The transcription factor, sterol regulatory binding protein 1c (also called adipocyte determination and differentiation-dependent factor 1), stimulates transcription of the messenger ribonucleic acids (mRNAs) for lipid synthesis enzymes. Hepatic ADD1 transcripts are reduced by polyunsaturated fatty acids (PUFAs). The ADD1 transcripts are expressed to a considerable extent in porcine adipocytes. Consequently, it was of interest to examine the effects of several PUFAs on ADD1 in a tissue wherein several long-chain fatty acids (FAs) increase adipocyte differentiation. The effects of arachidonic acid (C20∶4), docosahexaenoic acid (C22∶6), and cis 9, trans 11-conjugated linoleic acid (9,11-CLA) on differentiating preadipocyte ADD1 mRNA and protein and on preadipocyte differentiation were determined. Porcine stromal-vascular cells were plated in serum-containing medium and differentiated in serum-free medium containing insulin, hydrocortisone, and transferrin ± an individual FA. After 24-h differentiation ± FA, plates were stained with Oil Red O as an indicator of differentiation or total RNA was extracted or a nuclear fraction was isolated for protein measurement. Addition of C20∶4 or 9,11-CLA increased the number of Oil Red O-stained cells or the Oil Red O-stained material, whereas C22∶6 did not. Addition of C20∶4, C22∶6, or 9,11-CLA decreased the concentration of the mRNA and protein for ADD1. Thus, although all three FAs decreased the ADD1 mRNA and protein concentrations, C20∶4 and 9,11-CLA increased differentiation, measured by Oil Red O staining, whereas C22∶6 did not. The data suggest that the regulation of differentiation and mRNAs by individual FAs may involve distinct mechanisms.

Key words

adipocyte differentiation porcine ADD1 conjugated linoleic acid polyunsaturated fatty acids PPARγ C/EBPα lipoprotein lipase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amri, E. Z.; Bertrand, B.; Ailhaud, G.; Grimaldi, P. Regulation of adipose cell differentiation. I. Fatty acids are inducers of the ap2 gene expression. J. Lipid Res. 32:1449–1456; 1991.PubMedGoogle Scholar
  2. Belury, M. A.; Vanden Heuval, J. P. Modulation of diabetes by conjugated linoleic acid. In: Yurawecz, M. P.; Mossoba, M. M.; Kramer, J. K. G.; Pariza, M. W.; Nelson, G. J., ed. Advances in in conjugated linoleic acid research 1. Champaign, IL: AOCS Press; 1999:404–411.Google Scholar
  3. Brodie, A. E.; Manning, V. A.; Ferguson, K. R.; Jewell, D. E.; Hu, C. Y. Conjugated linoleic acid inhibits differentiation of pre- and post-confluent 3t3-11 preadipocytes but inhibits cell proliferation only in preconfluent cells. J. Nutr. 129:602–606; 1999.PubMedGoogle Scholar
  4. Brun, R. P.; Kim, J. B.; Hu, E.; Spiegelman, B. M. Peroxisome proliferator-activated receptor gamma and the control of adipogenesis. Curr. Opin. Lipidol. 8:212–218; 1997.PubMedCrossRefGoogle Scholar
  5. Burnette, W. N. “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein a. Anal. Biochem. 112:195–203; 1981.PubMedCrossRefGoogle Scholar
  6. Ding, S. T.; McNeel, R. L.; Mersmann, H. J. Expression of porcine adipocyte transcripts: tissue distribution and differentiation in vitro and in vivo. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 123:307–318; 1999.PubMedCrossRefGoogle Scholar
  7. Ding, S.-T.; McNeel, R. L.; Mersmann, H. J. Conjugated linoleic acid increases the differentiation of porcine adipocytes in vitro. Nutr. Res. 20:1569–1580; 2000b.CrossRefGoogle Scholar
  8. Ding, S.-T.; Mersmann, H.J. Fatty acids modulate porcine adipocyte differentiation and transcripts for transcription factors and adipocyte-characteristic proteins. J. Nutr. Biochem. 12:101–108; 2001.PubMedCrossRefGoogle Scholar
  9. Ding, S.-T.; Schinckel, A. P.; Weber, T. E.; Mersmann, H. J. Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations J. Anim. Sci. 78:2127–2134; 2000a.PubMedGoogle Scholar
  10. Distel, R. J.; Robinson, G. S.; Spiegelman, B. M. Fatty acid regulation of gene expression. J. Biol. Chem. 267:5937–5941; 1992.PubMedGoogle Scholar
  11. Evans, M.; Geigerman, C.; Cook, J.; Curtis, L.; Kuebler, B.; McIntosh, M. Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3t3-l1 preadipocytes. Lipids 35:899–910; 2000.PubMedCrossRefGoogle Scholar
  12. Evans, M.; Park, Y.; Pariza, M.; Curtis, L.; Kuebler, B.; McIntosh, M. Trans-10, cis-12 conjugated linoleic acid reduces triglyceride content while differentially affecting peroxisome proliferator activated receptor gamma2 and ap2 expression in 3t3-l1 preadipocytes. Lipids 36:1223–1232; 2001.PubMedCrossRefGoogle Scholar
  13. Fajas, L.; Fruchart, J. C.; Auwerx, J. Transcriptional control of adipogenesis. Curr. Opin. Cell Biol. 10:165–173; 1998.PubMedCrossRefGoogle Scholar
  14. Gondret, F.; Ferre, P.; Dugail, I. Add-1/srebp-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J. Lipid Res. 42:106–113; 2001.PubMedGoogle Scholar
  15. Gregoire, F. M. Adipocyte differentiation: from fibroblast to endocrine cell. Exp. Biol. Med. (Maywood) 226:997–1002; 2001.Google Scholar
  16. Gregoire, F. M.; Smas, C. M.; Sul, H. S. Understanding adipocyte differentiation. Physiol. Rev. 78:783–809; 1998.PubMedGoogle Scholar
  17. Hannah, V. C.; Ou, J.; Luong, A.; Goldstein, J. L.; Brown, M. S. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in hek-293 cells. J. Biol. Chem. 276:4365–4372; 2001.PubMedCrossRefGoogle Scholar
  18. Hill, J. O.; Peters, J. C.; Lin, D.; Yakubu, F.; Greene, H.; Swift, L. Lipid accumulation and body fat distribution is influenced by type of dietary fat fed to rats. Int. J. Obeset. Relat. Metab. Disord. 17:223–236; 1993.Google Scholar
  19. Houseknecht, K. L.; Vanden Heuvel, J. P.; Moya-Camarena, S. Y.; Portocarrero, C. P.; Peck, L. W.; Nickel, K. P.; Belury, M. A. Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the zucker diabetic fatty fa/fa rat [published erratum appears in Biochem. Biophys. Res. Commun. 247(3):911; June 29; 1998]. Biochem. Biophys. Res. Commun. 244:678–682; 1998.PubMedCrossRefGoogle Scholar
  20. Kim, H. S.; Hausman, G. J.; Hausman, D. B.; Martin, R. J.; Dean, R. G. The expression of peroxisome proliferator-activated receptor gamma in pig fetal tissue and primary stromal-vascular cultures. Obes. Res. 8:83–88; 2000.PubMedCrossRefGoogle Scholar
  21. Kim, J. B.; Spiegelman, B. M. Add1/srebp1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10:1096–1107; 1996.PubMedGoogle Scholar
  22. Kim, H. J.; Takahashi, M.; Ezaki, O. Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (srebp-1) by down-regulation of srebp-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J. Biol. Chem. 274:25892–25898; 1999.PubMedCrossRefGoogle Scholar
  23. Kim, J. B.; Wright, H. M.; Wright, M.; Spiegelman, B. M. Add1/srebp1 activates ppargamma through the production of endogenous ligand. Proc. Natl. Acad. Sci. USA 95:4333–4337; 1998.PubMedCrossRefGoogle Scholar
  24. Kliewer, S. A.; Sundseth, S. S.; Jones, S. A., et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl. Acad. Sci. USA 94:4318–4323; 1997.PubMedCrossRefGoogle Scholar
  25. Krey, G.; Braissant, O.; L'Horset, F.; Kalkhoven, E.; Perroud, M.; Parker, M. G.; Wahli, W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11:779–791; 1997.PubMedCrossRefGoogle Scholar
  26. Lee, K.; Hausman, G. J.; Dean, R. G. Expression of c/ebp alpha, beta and delta in fetal and postnatal subcutaneous adipose tissue. Mol. Cell. Biochem. 178:269–274; 1998.PubMedCrossRefGoogle Scholar
  27. MacDougald, O. A.; Mandrup, S. Adipogenesis: forces that tip the scales. Trends Endocrinol. Metab. 13:5–11; 2002.PubMedCrossRefGoogle Scholar
  28. Mandrup, S.; Lane, M. D. Regulating adipogenesis. J. Biol. Chem. 272:5367–5370; 1997.PubMedCrossRefGoogle Scholar
  29. McNeel, R. L.; Ding, S.; O'Brian Smith, E.; Mersmann, H. J. Expression of porcine adipocyte transcripts during differentiation in vitro and in vivo. Comp. Biochem. Physiol. B 126:291–302; 2000a.PubMedCrossRefGoogle Scholar
  30. McNeel, R. L.; Ding, S. T.; Smith, E. O.; Mersmann, H. J. Expression of porcine adipocyte transcripts during differentiation in vitro and in vivo. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126:291–302; 2000b.PubMedCrossRefGoogle Scholar
  31. McNeel, R. L.; Mersmann, H. J. Distribution and quantification of beta1-, beta2-, and beta3-adrenergic receptor subtype transcripts in porcine tissues. J. Anim. Sci. 77:611–621; 1999.PubMedGoogle Scholar
  32. Mersmann, H. J.; Goodman, J. R.; Brown, L. J. Development of swine adipose tissue: morphology and chemical composition. J. Lipid Res. 16:269–279; 1975.PubMedGoogle Scholar
  33. Morrison, R. F.; Farmer, S. R. Insights into the transcriptional control of adipocyte differentiation. J. Cell. Biochem. Suppl.: 59–67; 1999.Google Scholar
  34. O'Hea, E. K.; Leveille, G. A. Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis. J. Nutr. 99:338–344; 1969.PubMedGoogle Scholar
  35. Ostrowska, E.; Muralitharan, M.; Cross, R. F.; Bauman, D. E.; Dunshea, F. R. Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J. Nutr. 129:2037–2042; 1999.PubMedGoogle Scholar
  36. Pariza, M. W.; Park, Y.; Cook, M. E. Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc. Soc. Exp. Biol. Med. 223:8–13; 2000.PubMedCrossRefGoogle Scholar
  37. Ramirez-Zacarias, J. L.; Castro-Munozledo, F.; Kuri-Harcuch, W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red o. Histochemistry 97:493–497; 1992.PubMedCrossRefGoogle Scholar
  38. Ramsay, T. G.; Rao, S. V.; Wolverton, C. K. In vitro systems for the analysis of the development of adipose tissue in domestic animals. J. Nutr. 122:806–817; 1992.PubMedGoogle Scholar
  39. Rosen, E. D.; Spiegelman, B. M. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16:145–171; 2000.PubMedCrossRefGoogle Scholar
  40. Rosen, E. D.; Walkey, C. J.; Puigserver, P.; Spiegelman, B. M. Transcriptional regulation of adipogenesis. Genes Dev. 14:1293–1307; 2000.PubMedGoogle Scholar
  41. Sakai, J.; Duncan, E. A.; Rawson, R. B.; Hua, X.; Brown, M. S.; Goldstein, J. L. Sterol-regulated release of srebp-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85:1037–1046; 1996.PubMedCrossRefGoogle Scholar
  42. Satory, D. L.; Smith, S. B. Conjugated linoleic acid inhibits proliferation but stimulates lipid filling of murine 3t3-l1 preadipocytes. J. Nutr. 129:92–97; 1999.PubMedGoogle Scholar
  43. Suryawan, A.; Hu, C. Y. Effect of serum on differentiation of porcine adipose stromal-vascular cells in primary culture. Comp. Biochem. Physiol. Comp. Physiol. 105:485–492; 1993.PubMedCrossRefGoogle Scholar
  44. Thoennes, S. R.; Tate, P. L.; Price, T. M.; Kilgore, M. W. Differential transcriptional activation of peroxisome proliferator-activated receptor gamma by omega-3 and omega-6 fatty acids in mcf-7 cells. Mol. Cell. Endocrinol. 160:67–73; 2000.PubMedCrossRefGoogle Scholar
  45. Tontonoz, P.; Hu, E.; Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by ppar gamma 2, a lipid-activated transcription factor [published erratum appears in Cell 80(6):Following 957; March 24, 1995]. Cell 79:1147–1156; 1994.PubMedCrossRefGoogle Scholar
  46. Xu, J.; Nakamura, M. T.; Cho, H. P.; Clarke, S. D. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J. Biol. Chem. 274:23577–23583; 1999.PubMedCrossRefGoogle Scholar
  47. Xu, J.; Teran-Garcia, M.; Park, J. H.; Nakamura, M. T.; Clarke, S. D. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J. Biol. Chem. 276:9800–9807; 2001.PubMedCrossRefGoogle Scholar
  48. Yahagi, N.; Shimano, H.; Hasty, A. H., et al. A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J. Biol. Chem. 274:35840–35844; 1999.PubMedCrossRefGoogle Scholar
  49. Yu, Z. K.; Hausman, G. J. Expression of ccaat/enhancer binding protein during porcine preadipocyte differentiation. Exp. Cell Res. 245:343–349; 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2002

Authors and Affiliations

  • Shih-Torng Ding
    • 1
    • 2
  • Ronald L. McNeel
    • 1
  • Harry J. Mersmann
    • 1
  1. 1.USDA/ARS Children's Nutrition Research Center, Department of PediatricsBaylor College of MedicineHouston
  2. 2.Department of Animal SciencesNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations