Advertisement

Oxygen modulates the growth of skin fibroblasts

  • Arthur K. Balin
  • Loretta Pratt
Articles Cell Growth/Differentiation/Apoptosis

Summary

Elevated oxygen tensions are inhibitory to the growth of skin fibroblasts. Skin fibroblasts grow better at oxygen tensions below 137 mm Hg regardless of seeding density. A wide range of oxygen tensions, including those in the physiological range, strongly modulate the growth of human skin fibroblasts. There were no significant differences between the responses of fetal and postnatal cell lines to changes in ambient oxygen tension. In all cases, higher oxygen tensions significantly impeded cell growth. Seeding cells at 104 cells/cm2 afforded some protection from the deleterious effects of hyperoxia. Oxygen tensions exceeding the amount present in ambient room air also impeded cell growth at this higher seeding density, but the effect did, not become significant until the oxygen partial pressure reached 241 mm Hg. At lower oxygen tensions, cells seeded at 103 cells/cm2 grew more rapidly than did cells seeded at 104 cells/cm2. These findings may have implications for the treatment of poorly healing wounds with hyperbaric oxygen.

Key words

oxygen toxicity cell culture cell growth wound healing mitosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. G.; Balin, A. K. Developmental changes in the superoxide dismutase activity of human skin fibroblasts are maintained in vitro and are not caused by oxygen. J. Clin. Invest. 82:731–734; 1988.PubMedGoogle Scholar
  2. Allen, R. G.; Keogh, B. P.; Gerhard, G.; Pignolo, H.; Horton, J.; Cristofalo, V. J. Expression and regulation of SOD activity in human skin fibroblasts from donors of different ages. J. Cell. Physiol. 165:576–587; 1995.PubMedCrossRefGoogle Scholar
  3. Allen, R. G.; Keogh, B. P.; Tresini, M.; Gerhard, G. S.; Volker, C.; Pignolo, R. J.; Horton, J.; Cristofalo, V. J. Development and age-associated differences in electron transport potential and consequences for oxidant generation. J. Biol. Chem. 272:24805–24812; 1997.PubMedCrossRefGoogle Scholar
  4. Bakker, D. J. Hyperbaric oxygen therapy and the diabetic foot. Diabetes Metab. Res. Rev. 16 (Suppl. 1):S55-S58; 2000.PubMedCrossRefGoogle Scholar
  5. Balin, A. K.; Fisher, A. J.; Carter, D. M. Oxygen modulates growth of human cells at physiologic partial pressures. J. Exp. Med. 160:152–166; 1984.PubMedCrossRefGoogle Scholar
  6. Balin, A. K.; Goodman, D. G.; Rassmussen, H.; Cristofalo, V. J. The effect of oxygen tension on the growth and metabolism of WI-38 cells. J. Cell. Physiol. 89:235–250; 1976.PubMedCrossRefGoogle Scholar
  7. Balin, A. K.; Goodman, D. B. P.; Rasmussen, H.; Cristofalo, V. J. The effects of oxygen tension and vitamin E on the life span of human diploid cells in vitro. J. Cell Biol. 74:58–67; 1977.PubMedCrossRefGoogle Scholar
  8. Balin, A. K.; Goodman, D. B.; Rasmussen, H.; Cristofalo, V. J. Oxygensensitive stages of the cell cycle of human diploid cells. J. Cell Biol. 78(2):390–400; 1978.PubMedCrossRefGoogle Scholar
  9. Bass, B. H. The treatment of varicose leg ulcers with hyperbaric oxygen. Postgrad. Med. J. 46:407–408; 1970.PubMedGoogle Scholar
  10. Beckman, K. B.; Ames, B. N. The free radical theory of aging matures. Physiol. Rev., 78(2):547–581; 1998.PubMedGoogle Scholar
  11. Bonomo, S. R.; Davidson, J. D.; Tyrone, J. W.; Lin, X.; Mustoe, T. A. Enhancement of wound healing by hyperbaric oxygen and transforming growth factor beta3 in a new chronic wound model in aged rabbits. Arch. Surg. 135(10):1148–1153; 2000.PubMedCrossRefGoogle Scholar
  12. Bonomo, S. R.; Davidson, J. D.; Yu, Y.; Xia, Y.; Lin, X.; Mustoe, T. A. Hyperbaric oxygen as a signal transducer: upregulation of platelet derived growth factor-beta receptur in the presence of HB02 and PDGF. Undersea Hyperb. Med. 25(4):211–216; 1998.PubMedGoogle Scholar
  13. Bouachour, G.; Cronier, P.; Gouello, J. P.; Toulemonde, J. L.; Talha, A.; Alquier, P. Hyperbaric oxygen therapy in the management of crush injuries: a randomized double-blind placebo-controlled clinical trial. J. Trauma 41(2):333–339; 1996.PubMedCrossRefGoogle Scholar
  14. Boykin, J. V.; Crossland, M. C.; Cole, L.M. Wound healing management: enhancing patient outcomes and reducing costs. J. Health Care Resour. Manag. 15(4):22, 24–26; 1997.Google Scholar
  15. Cianci, P. Consensus development conference on diabetic foot wound care: a randomized controlled trial does exist supporting use of adjunctive hyperbaric oxygen therapy. Diabetes Care 23(6):873–874; 2000.PubMedCrossRefGoogle Scholar
  16. Ciaravino, M. E.; Friedell, M. L.; Kammerlocher, T. C. Is hyperbaric oxygen a useful adjunct in the management of problem lower extremity wounds? Ann. Vasc. Surg. 10(6):558–562; 1996.PubMedCrossRefGoogle Scholar
  17. Cristofalo, V. J.; Allen, R. G.; Pignolo, R. P.; Martin, B. M.; Beck, J. C. Relationship between donor age and the replicative life spans of human cells in culture: a re-evaluation. Proc. Natl. Acad. Sci. USA 95(18):10614–10619; 1998.PubMedCrossRefGoogle Scholar
  18. Cristofalo, V. J.; Sharf B. B. Cellular senescence and DNA synthesis: thymidine incorporation as a measure of population age in human diploid cells. Exp. Cell Res. 76:419–427; 1973.PubMedCrossRefGoogle Scholar
  19. Dooley, J.; King, G.; Slade, B. Establishment of reference pressure of transcutaneous oxygen for the comparative evaluation of problem wounds. Undersea Hyperb. Med. 24(4):235–244; 1997.PubMedGoogle Scholar
  20. Fennema, M.; Wessel, J. N.; Faithful, N. S.; Erdmann, W. Tissue oxygen tension in the cerebral cortex of the rabbit. Adv. Exp. Med. Biol. 248:451–460; 1989.PubMedGoogle Scholar
  21. Frank, L.; Massaro, D. Oxygen toxicity. Am. J. Med. 69(1):117–126; 1980.PubMedCrossRefGoogle Scholar
  22. Furth, J. J.; Allen, R. G.; Tresini, M.; Keogh, B.; Cristofalo, V. J. Abundance of α1(I) and α1(III) procollagen and p21 mRNAs in fibroblasts cultured from fetal and postnatal donors. Mech. Ageing Dev. 97:131–142; 1997.PubMedCrossRefGoogle Scholar
  23. Halliwell, B. Fiee radicals, oxygen toxicity and aging. In: Sohal, R. S., ed. Age pigments. Amsterdam: Elsevier; 1981:1–62.Google Scholar
  24. Harman, D. Aging: a theory based on free radical and radiation biology. J. Gerontol. 11:298–300; 1956.PubMedGoogle Scholar
  25. Harman, D. Free radicals in aging. Mol. Cell. Biol. 84:155–161; 1984.Google Scholar
  26. Haugaard, N. Cellular mechanisms of oxygen toxicity. Physiol. Rev. 48:311–373; 1968.PubMedGoogle Scholar
  27. Joachimsson, P. O.; Sjoberg, F.; Forsman, M.; Johansson, M.; Ahn, H. C.; Rutberg, H. Adverse effects of hyperoxemia during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 112(3):812–819; 1996.PubMedCrossRefGoogle Scholar
  28. Johnson, K.; Ward, P. Inflamation and active oxygen species. In: Oberley, L. W., ed., Superoxide dismutase. Boca Raton, FL, CRC Press; 1985; 129–143.Google Scholar
  29. Karlsson, C.; Paulsson, Y. Age-related induction of platelet-derived growth factor A-chain mRNA in normal human fibroblasts. J. Cell. Physiol. 158:256–262; 1994.PubMedCrossRefGoogle Scholar
  30. Keogh, B. P.; Allen, R. G.; Pignolo, R.; Horton, J.; Tresini, M.; Cristofalo, V. J. Expression of hydrogen peroxide and glutathione metabolizing enzymes in human skin fibroblasts derived from donors of different ages. J. Cell. Physiol. 167:512–522; 1996.PubMedCrossRefGoogle Scholar
  31. Knighton, D. R.; Hunt, T. K.; Scheuenstuhl, H.; Halliday, B. J.; Werb, Z.; Banda, M. J. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221(4617):1283–1285; 1983.PubMedCrossRefGoogle Scholar
  32. Kourembanas, S.; Marsden, P. A.; McQuillan, L. P.; Faller, D. V. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest. 88(3):1054–1057;1991.PubMedCrossRefGoogle Scholar
  33. Lambertson, C. The atmosphere and gas exchanges with the lungs and blood. In: Mountcastle, V., ed. Medical physiology, 13th ed. St. Louis, MO: Mosby Company; 1974:1372–1374.Google Scholar
  34. Martin, G. M. Preparation of primary cultures. Human skin fibroblasts, In: Kruse, P. F.; Patterson, M. K., eds. Tissue culture methods and applications, New York: Academic Press; 1973:39–43.Google Scholar
  35. McCord, J. M. The role of superoxide in postischemic tissue injury. In: Oberley, L. W., ed. Superoxide dismutase. Boca Raton, FL: CRC Press; 1985:1143–1151.Google Scholar
  36. Morton, H. J. A survey of commercially available tissue culture media. In Vitro 6(2):89–108; 1970.PubMedCrossRefGoogle Scholar
  37. Phillips, M. J. Dye exclusion tests for cell viability. In: Kruse, P. F.; Patterson, M. K., ed. Tissue culture methods and application, New York: Academic Press; 1973:406–408.Google Scholar
  38. Ryan, J. M.; Sharf, B. B.; Cristofalo, V.J. The influence of culture medium volume on cell density and lifespan of human diploid fibroblasts. Exp. Cell Res. 91:389–392; 1975.PubMedCrossRefGoogle Scholar
  39. Schneider, E. L.; Stanbridge, E. J. A simple biochemical technique for the detection of mycoplasma contamination of cultured cells. Methods Cell Biol. 10:277–290; 1975.PubMedGoogle Scholar
  40. Varghese, M. C.; Balin, A. K.; Carter, D. M.; Caldwell, D. Local environment of chronic wounds under synthetic dressings. Arch. Dermatol. 122(1):52–57; 1986.PubMedCrossRefGoogle Scholar
  41. von Zglinicki, T.; Pilger, R.; Sitte, N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic. Biol. Med. 28(1):64–74; 2000CrossRefGoogle Scholar
  42. Wharton, W. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements. Exp. Cell Res. 154:310–314; 1984.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2002

Authors and Affiliations

  1. 1.Laboratory for Investigative DermatologyThe Rockefeller UniversityNew York

Personalised recommendations