Advertisement

In Vitro Cellular & Developmental Biology - Animal

, Volume 37, Issue 8, pp 505–514 | Cite as

Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: Endothelial versus epithelial features

  • Kayoshi Suda
  • Barbara Rothen-Rutishauser
  • Maja Günthert
  • Heidi Wunderli-AllenspachEmail author
Cell and Tissue Models

Summary

ECV 304 cells reported as originating from human umbilical vein endothelial cells by spontaneous transformation have been used as a model cell line for endothelia over the last decade. Recently, deoxyribonucleic acid fingerprinting revealed an identical genotype for ECV 304 and T24 cells (urinary bladder carcinoma cell line). In order to resolve the apparent discrepancy between the identical genotype and the fact that ECV304 cells phenotypically show important endothelial characteristics, a comparative study was performed. Immortalized porcine brain microvascular endothelial cells/C1–2, and Madin Darby canine kidney cells were included as typical endothelial and epithelial cells, respectively. Various methods, such as confocal laser scanning microscopy, Western blot, and protein activity tests, were used to study the cell lines. ECV304 and T24 cells differ in criteria, such as growth behavior, cytoarchitecture, tight junction arrangement, transmembrane electrical resistance, and activity of γ-glutamyltransferase. Several endothelial markers (von Willebrand factor, uptake of low-density lipoprotein, vimentin) could clearly be identified in ECV304, but not in T24 cells. Desmoglein and cytokeratin, both known as epithelial markers, were found in ECV304 as well as T24 cells. However, differences were found for the two cell lines with respect to the type of cytokeratin: in ECV304 cells mainly cytokeratin 18 (45 kDa) is found, whereas in T24 cells cytokeratin 8 (52 kDa) is predominant. As we could demonstrate, the ECV 304 cell line exposes many endothelial features which, in view of the scarcity of suitable endothelial cell lines, still make it an attractive in vitro model for endothelia.

Key words

endothelia epithelia tight junction cytoarchitecture cell markers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot, S.E.; Kaul, A.; Stevens, C.R.; Blake, D.R. Isolation and culture of synovial microvascular endothelial cells. Characterization and assessment of adhesion molecule expression. Arthritis Rheum. 35:401–406; 1992.PubMedCrossRefGoogle Scholar
  2. Abedi, H.; Zachary, I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. 272:15,442–15,451; 1997.CrossRefGoogle Scholar
  3. Alexander, J.S.; Patton, W.F.; Yoon, M.U.; Shepro, D. Cytokeratin filament modulation in pulmonary microvessel endothelial cells by vasoactive agents and culture confluency. Tissue Cell 23: 141–150; 1991.PubMedCrossRefGoogle Scholar
  4. Bowman, P.D.; Du Bois, M.; Shivers, R.R.; Dorovini-Zis, K. Endothelial tight junction. In: Cereijido, M., ed. Tight junctions, Boca Raton, FL. CRC Press; 1992: 305–320.Google Scholar
  5. Bubenik, J.; Baresova, M.; Viklicky, V.; Jakoubkova, J.; Sainerova, H.; Donner, J. Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen. Int. J. Cancer 11:765–773: 1973.PubMedCrossRefGoogle Scholar
  6. Chung-Welch, N.; Patton, W.F.; Shepro, D.; Cambria, R.P. Two-stage isolation procedure for obtaining homogenous populations of microvascular endothelial and mesothelial cells from human omentum. Microvasc. Res. 54:121–134; 1997.PubMedCrossRefGoogle Scholar
  7. Commandeur, J.N.M.; Stijntjes, G.J.; Vermeulen, N.P.E. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates: role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol. Rev. 47:271–330; 1995.PubMedGoogle Scholar
  8. Connell, N.D.; Rheinwald, J.G. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 34:245–253; 1983.PubMedCrossRefGoogle Scholar
  9. Czernobilsky, B.; Moll, R.; Levy, R.; Franke, W.W. Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur. J. Cell Biol. 37:175–190; 1985.PubMedGoogle Scholar
  10. De Boer, A.G.; Gaillard, P.J.; Breimer, D.D. The transference of results between blood-brain barrier cell culture systems. Eur. J. Pharm. Sci. 8:1–4; 1999.PubMedCrossRefGoogle Scholar
  11. Dejana, E.; Corada, M.; Lampugnani, M.G.; Endothelial cell-to-cell junctions. FASEB J 9:910–918; 1995.PubMedGoogle Scholar
  12. Dirks, W.G.; Macleod, R.A.F.; Drexler, H.G. ECV304 (endothelial) is really T24 (bladder carcinoma): cell line cross-contamination at source. In Vitro Cell. Dev. Biol. 35A:558–559; 1999.Google Scholar
  13. Dobbie, M.S.; Hurt, R.D.; Klein, N.J.; Surtees, R.A.H. Upregulation of intercellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-α in an in vitro model of the blood-brain barrier. Brain Res. 830:330–336; 1999.PubMedCrossRefGoogle Scholar
  14. Dunina-Barkovskaya, A, Tight junctions: facts and models. Membr. Cell Biol. 11:555–589; 1998.PubMedGoogle Scholar
  15. Flatow, U.; Rabson, A.B.; Rabson, A.S. Tumorigenicity of T24 urinary bladder carcinoma cellssublines. Int. J. Cancer 40:240–245; 1987.PubMedCrossRefGoogle Scholar
  16. Folkman, J. The role of angiogenesis in tumor growth. Semin. Cancer Biol. 3:65–71; 1992.PubMedGoogle Scholar
  17. Frey, A. Gamma-glutamyl transpeptidase: molecular cloning and structural and functional features of a blood-brain barreir marker protein. In: Pardrige, W.M., ed. The blood-brain barrier: cellular and molecular biology. New York: Raven Press; 1993:339–368.Google Scholar
  18. Glukhova, M.A.; Shekhonin, B.V.; Kruth, H.; Koteliansky, V.E. Expression of cytokeratin 8 in human aortic smooth muscle cells. Am. J. Physiol. 261:72–77; 1991.PubMedGoogle Scholar
  19. Hämmerle, S.P.; Rothen-Rutishauser, B.; Krämer, S.D.; Günthert, M.; Wunderli-Allenspach, H. P-gp in cell cultures: a combined approach to study expression, localisation, and functionality in the confocal microscope. Eur. J. Pharm. Sci. 12:69–77; 2000.PubMedCrossRefGoogle Scholar
  20. Hewett, P.W.; Murray, J.C. Human microvessel endothelial cells: isolation, culture and characterization. In Vitro Cell. Dev. Biol. 29A:823–830; 1993.Google Scholar
  21. Holthofer, H.; Miettinen, A.; Lehto, V.P.; Lehtonen, E.; Virtanen, I. Expression of vimentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys. Lab. Invest. 50:552–559; 1984.PubMedGoogle Scholar
  22. Hosoya, K.I.; Kim, K.J.; Lee, V.H. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers. Pharm. Res. 13:885–890; 1996.PubMedCrossRefGoogle Scholar
  23. Hrycyna, C.A.; Airan, L.E.; Germann, U.A.; Ambudkar, S.V.; Pastan, I.; Gottesman, M.M. Structural flexibility of the linker region of human P-glycoprotein permits ATP hydrolysis and drug transport. Biochemistry 37:13,660–13,673; 1998.CrossRefGoogle Scholar
  24. Hughes, S.E. Functional characterization of the spontaneously transformed human umbilical vein endothelial cell line ECV304: use in an in vitro model of angiogenesis. Exp. Cell Res. 225:171–185; 1996.PubMedCrossRefGoogle Scholar
  25. Hurst, R.D.; Fritz, I.B. Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood-brain barrier. J. Cell. Physiol. 167:81–88; 1996.PubMedCrossRefGoogle Scholar
  26. Imao, T.; Koshida, K.; Endo, Y.; Uchibayashi, T.; Sasaki, T.; Namiki, M. Dominant role of E-cadherin in the progression of bladder cancer. J. Urol. 161:692–698; 1999.PubMedCrossRefGoogle Scholar
  27. Kiessling, F.; Kartenbeck, J.; Haller, C. Cell-cell contacts in the human cell line ECV304 exhibit both endothelial and epithelial characteristics. Cell Tissue Res. 297: 131–140; 1999.PubMedCrossRefGoogle Scholar
  28. Kikkawa, Y.; Akaogi, K.; Mizushima, H.; Yamanaka, N.; Umeda, M.; Miyazaki, K. Stimulation of endothelial cell migration in culture by ladsin, a laminin-5-like cell adhesion protein. In Vitro Cell. Dev. Biol. 32A:46–52; 1996.Google Scholar
  29. Kim, C.S.; Wang, T.; Madri, J.A. Platelet endothelial cell adhesion moleculel expression modulates endothelial cell migration in vitro. Lab. Invest. 78:583–590; 1998.PubMedGoogle Scholar
  30. Lechardeur, D.; Schwartz, B.; Paulin, D.; Scherman, D. Induction of bloodbrain barrier differentiation in a rat brain-derived endothelial cell line. Exp. Cell Res. 220:161–170; 1995.PubMedCrossRefGoogle Scholar
  31. Massy, Z.A.; Keane, W.F. Pathogenesis of atherosclerosis. Semin. Nephrol. 16:12–20; 1996.PubMedGoogle Scholar
  32. McRoberts, J.A.; Taub, M.; Saier, M.H. The Madin Darby canine kidney (MDCK) cell link. In: Sato G.H., ed. Functionally differentiated cell lines New York: Alan R. Liss; 1981: 117–139Google Scholar
  33. Naftalin, L.; Sexton, M.; Whitaker, J.F.; Tracey, A. A routine procedure for estimating serum γ-glutamyltranspeptidase activity. Clin. Chim. Acta 26:293–296: 1969.PubMedCrossRefGoogle Scholar
  34. Pal, D.; Audus, K.L.; Siahaan, T.J. Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Res. 747:103–113; 1997.PubMedCrossRefGoogle Scholar
  35. Relling, M.V. Are the major effects of P-glycoprotein modulators due to altered pharmacokinetics of anticancer drugs. Ther. Drug Moit. 18:350–356; 1996.CrossRefGoogle Scholar
  36. Richardson, J.C.W.; Scalera, V.; Simmons, N.L. Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim. Biophys. Acta 673:26–36; 1981.PubMedGoogle Scholar
  37. Rothen-Rutishauser, B.M.; Krämer, S.D.; Braun, A.; Günthert, M.; Wunderli-Allenspach, H. MDCK cell cultures as an epithelial in vitro model: cytoskeleton and tight junctions as indicators for the definition of age-related stages by confocal microscopy. Pharm. Res. 15:964–971; 1998.PubMedCrossRefGoogle Scholar
  38. Rubin, L.L.; Hall, D.E.; Porter, S.; Barbu, K.; Cannon, C.; Horner, H.C.; Janatpour, M.; Liaw, C.W.; Manning, K.; Morales, J. A cell culture model of the blood-brain barrier. J. Cell Biol. 115:1725–1735; 1991.PubMedCrossRefGoogle Scholar
  39. Schmid, E.; Schiller, D.L.; Grund, C.; Stadler, J.; Franke, W.W. Tissue typespecific expression of intermediate filament proteins in a cultured epithelial cell line from bovine mammary gland. J. Cell Biol. 96:37–50; 1983.PubMedCrossRefGoogle Scholar
  40. Scism, J.L.; Laska, D.A.; Horn, J.W.; Gimple, J.L.; Pratt, S.E.; Shepard, R.L.; Dantzig, A.H.; Wrighton, S.A. Evaluation of an in vitro coculture model for the blood-brain barrier: comparison of human umbilical vein endothelial cells (ECV304) and rat glioma cells (C6) from two commercial sources. In Vitro Cell. Dev. Biol. 35A:580–592; 1999.Google Scholar
  41. Scott, P.A.; Bicknell, R The isolation and culture of microvascular endothelium J. Cell Sci. 105:269–273; 1993.PubMedGoogle Scholar
  42. Stosiek, P.; Kasper, M.; Conrad, K. Immunhistochemische Untersuchungen zur Cytokeratin-Expression in menschlichen Gefässendothelien unter besonderer Berücksichtigung des Gelenkbindegewebes. Acta Histochem. 89:61–66; 1990.PubMedGoogle Scholar
  43. Stuart, R.O.; Sun, A.; Panichas, M.; Hebert, S.C.; Brenner, B.M.; Nigam, S.K.; Critical role for intracellular calcium in tight junction biogenesis. J. Cell. Physiol. 159:423–433; 1994.PubMedCrossRefGoogle Scholar
  44. Takahashi, K.; Sawasaki, Y. Human endothelial cell line, ECV304, produces pro-urokinase [letter]. In Vitro Cell Dev. Biol. 27A; 766–768; 1991.PubMedGoogle Scholar
  45. Takahashi, K.; Sawasaki, Y.; Hata, J.; Mukai, K.; Goto, T. Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell. Dev. Biol. 26:265–274; 1990.PubMedGoogle Scholar
  46. Tang, C.G.; Chen, Y.Q.; Newman, P.J.; Shi, L.; Gao, X.; Diglio, C.A.; Honn, K.V. Identification of PECAM-1 in solid tumor cells and its potential involvement in tumor cell adhesion to endothelium. J. Biol. Chem. 268:22,883–22,894; 1993.Google Scholar
  47. Teifel, M.; Friedl, P. Establishment of the permanent microvascular endothelial cell line PBMEC/C1–2 from porcine brains. Exp. Cell Res. 228:50–57; 1996.PubMedCrossRefGoogle Scholar
  48. Thiebaut, F.; Tsuro, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738; 1987PubMedCrossRefGoogle Scholar
  49. Traweek, S.T.; Liu, J.; Battifora, H. Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction. Am. J. Pathol. 142: 1111–1118; 1993.PubMedGoogle Scholar
  50. Vanderlaan, M.; Phares, W. α-Glutamyltranspeptidase: a tumour cell marker with a pharmacological function. Histochem. J. 13:865–877; 1981.PubMedCrossRefGoogle Scholar
  51. Verkoelen, C.F.; Romijn, J.C.; De Bruijn W.C.; Boeve E.R.; Cao, L.C.; Schroder, F.H. Association of calcium oxalate monohydrate crystals with MDCK cells. Kidney Int. 48:129–138; 1995.PubMedGoogle Scholar
  52. Vinals, F.; Gross, A.; Testar, X.; Palacin, M.; Rosen, P.; Zorzano, A. High glucose concentrations inhibit glucose phosphorylation, but not glucose transport, in human endothelial cells. Biochim. Biophys. Acta 1450:119–129; 1999.PubMedCrossRefGoogle Scholar
  53. Voyta, J.C.; Via, D.P.; Butterfield, C.E.; Zetter, B.R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040; 1984.PubMedCrossRefGoogle Scholar
  54. Wagner, D.D.; Olmsted, J.B.; Marder, V.J. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells J. Cell Biol. 95:355–360; 1982.PubMedCrossRefGoogle Scholar
  55. Wakatsuki, S.; Watanabe, R.; Saito, K.; Saito, T.; Katagiri, A.; Sato, S.; Tomita, Y Loss of human E-cadherin (ECD) correlated with invasiveness of transitional cell cancer in the renal pelvis, ureter and urinary bladder. Cancer Lett. 103:11–17; 1996.PubMedCrossRefGoogle Scholar
  56. Wong, V. Phosphorylation of occludin correlated with occludin localization and function at the tight junction. Am. J. Physiol. 273:C1859-C1867; 1997.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 2001

Authors and Affiliations

  • Kayoshi Suda
    • 1
  • Barbara Rothen-Rutishauser
    • 1
  • Maja Günthert
    • 1
  • Heidi Wunderli-Allenspach
    • 1
    Email author
  1. 1.Biopharmacy, Department of Applied BioSciencesETH ZurichZurichSwitzerland

Personalised recommendations