A tribute to Dr. Theodore T. Puck

September 24, 1916–November 6, 2005
Reviews

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fischer, A. Biology of tissue cells: essays. Cambridge University Press; 1946: 16–17.Google Scholar
  2. Gey, G. O.; Coffman, W. D.; Kubicek, M. T. Tissue culture studies on the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12:264–265; 1954.Google Scholar
  3. Harris, H. The cells of the body: a history of somatic cell genetics, Cold Spring Harbor Laboratory Press; 1995:47–51, 104–108.Google Scholar
  4. Lanouette, W., Genius in the shadows. New York: Charles Scribner's Sons; 1992:396–397.Google Scholar
  5. Marcus, P. I.; Puck, T. T., Host-cell interaction of animal viruses. I. Titration of cell-killing by viruses. Virol. 6:405–423; 1958.CrossRefGoogle Scholar
  6. Puck, T. T.; Marcus, P. I. A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc. Natl. Acad. Sci. USA 41:432–437; 1955.PubMedCrossRefGoogle Scholar
  7. Puck, T. T.; Marcus, P. I. Action of X-rays on mammalian cells. J. Exp. Med. 103:653–666; 1956.PubMedCrossRefGoogle Scholar
  8. Puck, T. T.; Robertson, O. H.; Lemon, H. M. The bactericidal action of propylene glycol vapor on microorganisms suspended in air. II. The influence of various factors on the activity of vapor. J. Exp. Med. 78:387–406; 1943.CrossRefPubMedGoogle Scholar
  9. Sanford, K. K.; Earle, W. R.; Likely, G. D. The growth in vitro of single isolated cells. J. Natl. Cancer Inst. 9:229–246; 1948.PubMedGoogle Scholar
  10. Tolmach, L. J.; Marcus, P. I. Development of X-ray induced giant HeLa cells. Exp. Cell Res. 20:350–360; 1960.PubMedCrossRefGoogle Scholar

References

  1. Fisher, H. W.; Puck, T. T.; Sato, G. H. Molecular growth requirements of single mammalian cells: the action of fetuin in promoting cell attachment to glass. Proc. Natl. Acad. Sci. USA 44:4–10; 1958.PubMedCrossRefGoogle Scholar
  2. Fisher, H. W.; Puck, T. T.; Sato, G. H. Molecular growth requirements of single mammalian cells. III. Quantitative colonial growth of single S3 cells in a medium containing synthetic small molecular constituents and two purified protein fractions. J. Exp. Med. 109:649–661; 1959.PubMedCrossRefGoogle Scholar
  3. Sato, G. H.; Fisher, H.; Puck, T. T. Molecular growth requirements of single mammalian cells. Science 126:961–964; 1957.CrossRefPubMedGoogle Scholar
  4. Tjio, J. H.; Levan, A. The chromosome number in man. Hereditas 42:1–6; 1956.CrossRefGoogle Scholar
  5. Tjio, J. H.; Puck, T.T. The somatic chromosomes of man. Proc. Natl. Acad. Sci. USA 44:1229–1237; 1958.PubMedCrossRefGoogle Scholar

References

  1. Barnes, D.; Sato, G. H. Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102:255–270; 1980.PubMedCrossRefGoogle Scholar
  2. Fisher, H. W.; Sato, G. H.; Puck, T. T. Molecular growth requirements of single mammalian cells III. Quantitative colonial growth of single S3 cells in a medium containing synthetic small molecular constituents and two purified protein fractions. J. Exp. Med. 109:649–661; 1959.PubMedCrossRefGoogle Scholar
  3. Ham, R. G. Clonal growth of diploid Chinese hamster cells in a synthetic medium supplemented with purified protein fractions. Exp. Cell Res. 28:489–500; 1962.PubMedCrossRefGoogle Scholar
  4. Ham, R. G. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp. Cell Res. 29:515–526; 1963a.PubMedCrossRefGoogle Scholar
  5. Ham, R. G. Albumin replacement by fatty acids in clonal growth of mammalian cells. Science 140:802–803; 1963b.PubMedCrossRefGoogle Scholar
  6. Ham, R. G. Putrescine and related amines as growth factors for a mammalian cell line. Biochem. Biophys. Res. Commun. 14:34–8; 1964.PubMedCrossRefGoogle Scholar
  7. Ham, R. G. Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc. Natl. Acad. Sci. USA 53:288–293; 1965.PubMedCrossRefGoogle Scholar
  8. Ham, R. G.; McKeehan, W. L. Media and growth requirements. Meth. Enzymol. 58:44–93; 1979.PubMedCrossRefGoogle Scholar
  9. Ham, R. G.; Puck, T. T. Quantitative colonial growth of isolated mammalian cells. Meth. Enzymol. 5:90–119; 1962.CrossRefGoogle Scholar
  10. Hamilton, W. G.; Ham, R. G. Clonal growth of Chinese hamster cell lines in protein-free media. In Vitro. 13:537–547; 1977.PubMedCrossRefGoogle Scholar
  11. Hsie, A. W.; Puck, T. T. Morphological transformation of Chinese hamster cells by dibutryl adenosine cyclic 3′,5′-monophosphate and testostcrone. Proc. Natl. Acad. Sci. USA 68:358–361; 1971.PubMedCrossRefGoogle Scholar
  12. Kao, F.-T.; Puck, T. T. Genetics of somatic mammalian cells IV. Properties of Chinese hamster cell mutants with respect to the requirement for proline. Genetics 55:513–524; 1967.PubMedGoogle Scholar
  13. Marcus, P. I. The genesis of feeder cells: concepts and practice. In Vitro Cell. Dev. Biol. This issue, 2006.Google Scholar
  14. Patterson, D. Ted Puck and the era of somatic cell genetics. In Vitro Cell. Dev. Biol., this issue; 2006.Google Scholar
  15. Puck, T. T. Living history biography. Am. J. Med. Genet. 53:274–284; 1994.PubMedCrossRefGoogle Scholar
  16. Puck, T. T.; Cieciura, S. J.; Robinson, A. Genetics of somatic mammalian cells III. Long-term cultivation of euploid cells from human and animal subjects. J. Exp. Med. 108:945–959; 1958PubMedCrossRefGoogle Scholar
  17. Robinson, A.; Book, J. E.; Chu, E. H. Y., et al. A proposed standard system for nomenclature of human mitotic chromosomes. JAMA 174:159–162; 1960.PubMedGoogle Scholar
  18. Sato, G. H. From phage genetics to early animal tissue culture. In Vitro Cell Dev. Biol., this issue; 2006.Google Scholar
  19. Szybalska, E. H.; Szybalski, W. Geneties of human cell lines. IV. DNA-mediated heritable transformation of a biochemical trait. Proc. Natl. Acad. Sci. USA 48:2026–2034; 1962.PubMedCrossRefGoogle Scholar
  20. Tjio, J. H.; Puck, T. T. The somatic chromosomes of man. Proc. Natl. Acad. Sci. USA 44:1229–1237; 1958.PubMedCrossRefGoogle Scholar

References

  1. Kao, F. T.; Chasin, L.; Puck, T. T. Genetics of somatic mammalian cells. X. Complementation analysis of glycine-requiring mutants. Proc. Natl. Acad. Sci USA 64:1284–1291; 1969.PubMedCrossRefGoogle Scholar
  2. Kao, F. T.; Puck, T. T. Genetics of somatic mammalian cells. VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc. Natl. Acad. Sci. USA 60:1275–1281; 1968.PubMedCrossRefGoogle Scholar
  3. Kao, F. T.; Puck, T. T. Genetics of somatic mammalian cells: demonstration of a human esterase activator gene linked to the adeB gene. Proc. Natl. Acad. Sci. USA 69:3273–3277; 1972.PubMedCrossRefGoogle Scholar
  4. Patterson, D.; Kao, F. T.; Puck, T. T. Genetics of somatic mammalian cells: biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism. Proc. Natl. Acad. Sci. USA 71:2057–2061; 1974.PubMedCrossRefGoogle Scholar
  5. Patterson, D.; Waldren, C. A.; Walker, C. Isolation and characterization of temperature-sensitive Chinese hamster ovary cells after treatment with UV and X-irradiation. Somatic Cell Genet. 2:113–123; 1976.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  1. 1.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrs
  2. 2.W. Alton Jones Cell Science CenterLake Placid
  3. 3.Department of Molecular, Cellular, and Developmental BiologyUniversity of ColoradoBoulder
  4. 4.Eleanor Roosevelt InstituteUniversity of DenverDenver

Personalised recommendations