Human myocardial cell lines generated with SV40 temperature-sensitive mutant TSA58

  • Bruce L. Goldman
  • Kunjlata M. Amin
  • Hajime Kubo
  • Arun Singhal
  • John Wurzel


Conditionally transformed human myocardial cell lines would be a valuable resource for studying human cardiac cell biology. We generated clonal human fetal cardiocyte cell lines by transfection of fetal ventricular cardiac cell clones with a plasmid containing a replication-defective mutant of the temperature-sensitive SV40 strain tsA58. Multiple resulting cell lines showed similar features, namely: (1) T antigen (TAg) expression at both permissive (34°C) and restrictive (40.5°C) temperatures; (2) extended growth capacity in comparison with parental wild type, when grown at the permissive temperature; (3) both temperature-dependent and serum-responsive growth, and; (4) an incompletely differentiated fetal phenotype which was similar at both permissive and restrictive temperatures and in the presence and absence of serum. The transformed myocyte phenotype was demonstrated using immunocytochemistry, Western and Northern blotting, and reverse transcription-polymerase chain reaction (RT-PCR). Cell lines expressed skeletal α-actin, atrial natriuretic peptide (ANP), and keratins, but no sarcomeric myosin heavy chain or desmin. Immunoreactive sarcomeric actin was expressed predominantly as a truncated protein of approximately 38 kD. The phenotype of the transformed cells differs from that of the wild-type parental cells as well as from those reported by others who have used TAg to immortalize rodent or human ventricular myocytes. Our cell lines should provide a useful tool for study of the molecular mechanisms regulating growth and differentiation in human cardiac muscle cells.

Key words

fetal heart myocardial differentiation viral transfection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bader, D. M. T.; Fischman, D. A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell. Biol. 95:763–770; 1982.PubMedCrossRefGoogle Scholar
  2. Chou, J. Differentiated mammalian cell lines immortalized by temperature-sensitive tumor viruses. Mol. Endocrinol. 3:1511–1514; 1989.PubMedCrossRefGoogle Scholar
  3. Delcarpio, J.; Lanson, N. J.; Field, L.; Claycomb, W. Morphological characterization of cardiomyocytes isolated from a transplantable cardiac tumor derived from transgenic mouse atria (AT-1 cells). Circ. Res. 69:1591–1600; 1991.PubMedGoogle Scholar
  4. Field, L. J. Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science 239:1029–1033; 226-1988.CrossRefGoogle Scholar
  5. Goldman, B.; Mach, A.; Wurzel, J. Epidermal growth factor promotes a cardiomyoblastic phenotype in human fetal cardiac myocytes. Exp. Cell Res. 228:237–245; 1996.PubMedCrossRefGoogle Scholar
  6. Goldman, B. I.; Wurzel, J. Effects of subcultivation and culture medium on differentiation of human fetal cardiac myocytes. In Vitro Cell. Dev. Biol. 28A:109–119; 1992.PubMedCrossRefGoogle Scholar
  7. Harlow, E.; Crawford, L. V., Pim, D. C.; Williamson, N. M. Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 39:861–869; 1981.PubMedGoogle Scholar
  8. Jahn, L.; Sadoshima, J.; Greene, A.; Parker, C.; Morgan, K. G.; Izumo, S. Conditional differentiation of heart-and smooth muscle-derived cells transformed by a temperature-sensitive mutant of SV40 T antigen. J. Cell Sci. 109:397–407; 1996.PubMedGoogle Scholar
  9. Jha, K. K.; Banga, S.; Palejwala, V.; Ozer, H. L. SV40-mediated immortalization. Exp. Cell Res. 245:1–7; 1998.PubMedCrossRefGoogle Scholar
  10. Katz, E. B.; Steinhelper, M. E.; Delcarpio, J. B.; Daud, A.I.; Claycomb, W. C.; Field, L. J. Cardiomyocyte proliferation in mice expressing alphacardiac myosin heavy chain-SV40 T-antigen transgenes. Am. J. Physiol. 262:H1867-H1876; 1992.PubMedGoogle Scholar
  11. Kim, B. H.; Sung, S. R., Choi, E. H. et al. Dedifferentiation of conditionally immortalized hepatocytes with long-term in vitro passage. Exp. Mol. Med. 32(1):29–37; 2000.PubMedGoogle Scholar
  12. Kimes, B. W.; Brandt, B. L. Properties of a clonal muscle cell line from rat heart. Exp. Cell Res. 98:367–381; 1976.PubMedCrossRefGoogle Scholar
  13. Kohtz, D. S.; Dische, N. R.; Inagami, T.; Godlman, B. Growt and partial differentiation of presumptive human cardiac myoblasts in culture. J. Cell Biol. 108:1067–1078; 1989.PubMedCrossRefGoogle Scholar
  14. Kubo, H.; Margulies, K. B.; Piacentino, III, V.; Gaughn, J. P.; Houser, S. R. Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance. Circulation 104:1012–1018; 2001.PubMedGoogle Scholar
  15. Miller, C.; Rulfs, J.; Jaspers, S. R.; Buckholt, M.; Miller, T. B., Jr. Transformation of adult ventricular myocytes with the temperature sensitive A58 (tsA58) mutant of the SV40 large T antigen. Mol. Cell. Biochem. 136:29–34; 1994.PubMedCrossRefGoogle Scholar
  16. Price, T. N.; Moorwood, K.; James, M. R.; Burke, J. F.; Mayne, L. V. Cell cycle progression, morphology and contact inhibition are regulated by the amound of SV40 T antigen in immortal human cells. Oncogene 9:2897–2904; 1994.PubMedGoogle Scholar
  17. Radna, R.; Caton, Y.; Jha, K.; Kaplan, P.; Li, G.; Traganos, F. Growth of immortal simian virus 40 tsA transformed human fibroblasts is temperature dependent. Mol Cell Biol. 9:3093–3096; 1989.PubMedGoogle Scholar
  18. Schiaffino, S.; Samuel, J. L.; Sassoon, D., et al. Nonsynchronous accumulation of alpha-skeletal actin and beta-myosin heavy chain mRNAs during early stages of pressure-overload-induced cardiac hypertrophy demonstrated by in situ hybridization. Circ. Res. 64:937–948; 1989.PubMedGoogle Scholar
  19. Sen, A.; Dummon, P.; Henderson, S. A.; Gerard, R. D.; Chien, K. R. Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J. Biol. Chem. 263:19132–19136; 1988.PubMedGoogle Scholar
  20. Sheffield, J. B.; Graff, D.; Li H. P. A solid-phase method for the quantitation of protein in the presence of sodium dodecyl sulfate and other interfering substances. Anal. Biochem. 165:471–476; 1987.CrossRefGoogle Scholar
  21. Skalli, O.; Gabbiani, G.; Babai, F.; Pizzolato, G.; Schurch, W. Intermediate-filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin II: Rhabdomyosarcomas. Am. J. Pathol. 130:515–531; 1988.PubMedGoogle Scholar
  22. Tegtmeyer, P. Function of simian virus 40 gene A in transforming infection. Virology 15:613–618; 1975.Google Scholar
  23. Wang, Y.-C.; Neckelmann, N.; Mayne, A.; Hershkowitz, A.; Alagarsamy, S.; Sell, K. W.; Ahmed-Assari, A. Establishment of a human fetal cardiac myocyte cell line. In Vitro Cell. Dev. Biol. 27A:63–74; 1991.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  • Bruce L. Goldman
    • 1
  • Kunjlata M. Amin
    • 4
  • Hajime Kubo
    • 2
  • Arun Singhal
    • 3
  • John Wurzel
    • 1
  1. 1.Department of Pathology and Laboratory MedicineTemple University School of MedicinePhiladelphiaUSA
  2. 2.Department of PhysiologyTemple University School of MedicinePhiladelphiaUSA
  3. 3.Department of Surgery, Division of Cardiothoracic SurgeryTemple University School of MedicinePhiladelphiaUSA
  4. 4.Department of SurgeryUniversity of Pennsylvania School of MedicineUSA

Personalised recommendations