Human diploid fibroblast cells in senescence; Cycling through polyploidy to mitotic cells

Articles Cell Growth/Differentiation/Apoptosis

Summary

Previously, it was found that senescent cells can undergo a modified cell cycle with mitotic cells as the end results. The major cycling events started with polyploidization, followed by depolyploidization to multinucleated cells (MNCs). These latter cells produced mononuclear offspring cells that could express mitotic cell divisions. In this report the emphasis is on late senescent fibroblasts that exhibited the senescence-associated change in cell morphology to large flat cells. Prior to live cell photography, flat cell cultures were maintained for months in the same culture flasks and therefore judged to be in a late senescent phase. All of the cellular events outlined above were present in these old cell cultures. Time lapse pictures showed movements of mitotic daughter cells away from each other and alignment of the chromosomes on the metaphase plate was visible in other mitotic cells. These data challenge the common view that cell senescence is irreversible and, therefore, an antitumor mechanism. A new finding was that the spike in polyploid cells in the near senescent phase consisted of cells with pairs of sister chromosomes from endoreduplication of DNA (two rounds of DNA synthesis and no mitosis). The lack of cells with 92 single chromosomes (e.g., G2 tetraploid cells) suggested that these polyploid cells also went through a changed cell cycle. The question now is whether these atypical polyploid cells are a subpopulation in senescence that can undergo the cycling from polyploidy to genome-reduced mitotic cells.

Key words

depolyploidization multinucleated cells (MNCs) nuclear budding from MNCs subcell replication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, M. T.; Pritchard, D.; Palanca-Wessel, C.; Anderson, J.; Reid, B. J. Molecular phenotype of spontaneously arising 4N (G2-tetraploid) intermediates of neoplastic progression in Barrett's esophagus. Cancer Res. 63:4211–4217; 2003.PubMedGoogle Scholar
  2. Bibbo, M.; Dytch, H. E.; Alenghat E.; Bartels, P. H.; Wied, G. L. DNA ploidy profiles as prognostic indicators in CIN lesions. Am. J. Clin. Pathol. 92:261–265; 1989PubMedGoogle Scholar
  3. Dimri, G. P.; Lee, X.; Basile, G. et al. A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92:9263–9367; 1995.CrossRefGoogle Scholar
  4. Duensing, S.; Duensing, A.; Crum, C. P.; Munger, K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61:2356–2360; 2001PubMedGoogle Scholar
  5. Edgar, B. A.; Orr-Weaver, T. L. Endoreplication cell cycles: more for less. Cell 105:297–306; 2001.PubMedCrossRefGoogle Scholar
  6. Erenpreisa, J. A.; Cragg, M. S.; Fringes, B.; Sharakhov, I.; Illidge, T. M. Release of mitotic descendants by giant cells from irradiated Burkitt's lymphoma cell lines. Cell Biol. Int. 24:635–648; 2000PubMedCrossRefGoogle Scholar
  7. Erenpreisa, J.; Kalejs, M.; Ianzini, F.; Kosmacek, E. A.; Mackey, M. A.; Emzinsh, D.; Cragg, M. S.; Ivanov, A.; Illidge, T. M. Segregation of genomes in polyploid tumor cells following mitotic catastrophe. Cell Biol. Int. 29:1005–1011; 2005a.PubMedCrossRefGoogle Scholar
  8. Erenpreisa, J.; Kalejs, M.; Cragg, M. S. Mitotic catastrophe and endomitosis in tumor cells: an evolutionary key to a molecular solution. Cell Biol. Int. 29:1012–1018; 2005b.PubMedCrossRefGoogle Scholar
  9. Galipeau, P. C.; Cowan, D. S.; Sanchez, C. A.; Barrett, M. T.; Emond, M. J.; Levine, D. S.; Rabinovitch, P. S.; Reid, B. J. 17p (p53) allelic losses, 4N (G2/tetraphloid) populations, and progression to aneuploidy in Barrett's esophagus. Proc. Natl. Acad. Sci. USA 93:7081–7084; 1996.PubMedCrossRefGoogle Scholar
  10. Galitski, T.; Saldanha, A. J.; Styles, C. A.; Lander, E. S.; Fink, G. R. Ploidy regulation of gene expression. Science 285:251–254; 1999.PubMedCrossRefGoogle Scholar
  11. Gorman, S. D.; Cristofalo, V. J. Analysis of the G1 arrest position of senescent W138 cells by quinacrine dihydrochloride nuclear fluorescence. Evidence for a late G1 arrest. Exp. Cell Res. 167:87–94; 1986.PubMedCrossRefGoogle Scholar
  12. Hahn, W. C.; Counter, C. M.; Lunberg, A. S.; Bejiersbergen, R. L.; Brooks, M. W.; Weinberg, R. A. Creation of human tumor cells with defined genetic elements. Nature 400:464–468; 1999.PubMedCrossRefGoogle Scholar
  13. Hayflick, L.; Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:585–621; 1961.CrossRefGoogle Scholar
  14. Huschtscha, L. I.; Noble, J. R.; Neuman A. A.; Moy, E. L.; Barry, P.; Melki, J. R.; Reddel, R. R. Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res. 58:3508–3512; 1998.PubMedGoogle Scholar
  15. Illidge, T. M.; Cragg, M. S.; Fringes, B.; Olive, P.; Erenpreisa, J. A. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol. Int. 24:621–633; 2000.PubMedCrossRefGoogle Scholar
  16. Krtolica, A.; Parrinello, S.; Lockett, S.; Desprez, P.-Y.; Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. USA 98:12072–12077; 2001.PubMedCrossRefGoogle Scholar
  17. Kuhn, E. M.; Therman, E.; Susman, B. Amitosis and endocycles in early cultured mouse trophoblast. Placenta 12:251–261; 1991.PubMedGoogle Scholar
  18. Lanks, K. W.; Lehman, J. M. DNA synthesis by L929 cells following doxorubicin exposure. Cancer Res. 50:4776–4778; 1990.PubMedGoogle Scholar
  19. Lo, D. C.; Allen, F.; Brockes, J. P. Reversal of muscle differentiation during urodele limb regeneration. Proc. Natl. Acad. Sci. USA 90:7230–7234; 1993.PubMedCrossRefGoogle Scholar
  20. Macieira-Coelho, A.; Ponten, J.; Philipson, L. Inhibition of the division cycle in confluent cultures of human fibroblasts in vitro. Exp. Cell Res. 43:20–29; 1966PubMedCrossRefGoogle Scholar
  21. Matsumura, T.; Pfendt, E. A.; Hayflick, L. DNA synthesis in human diploid cell strain WI-38 during in vitro aging. J. Gerontol. 34:323–327; 1979a.PubMedGoogle Scholar
  22. Matsumura, T.; Zerrudo, Z.; Hayflick, L. Senescent human diploid cells in culture: survival DNA, synthesis and morphology J. Gerontol. 34:328–334; 1979bPubMedGoogle Scholar
  23. Nigg, E. Centtosome aberrations: cause of cancer progression. Nat. Rev. Cancer 2:815–825; 2002.PubMedCrossRefGoogle Scholar
  24. Nishio, K.; Inoue, A.; Qiao, S.; Kondo, H.; Mimura, A. Senescence and cytoskeleton: overproduction of vimentin induces senescent-like morphology in human fibroblasts. Histochem. Cell Biol. 116:321–327; 2001.PubMedCrossRefGoogle Scholar
  25. Parker, G. A.; Touitou, R.; Allday, M. J. Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene 19:700–709; 2000.PubMedCrossRefGoogle Scholar
  26. Rabinovitch, P. Regulation of human fibroblast growth rate by both noncycling cell fraction and transition probability is shown by growth in 5-bromodeoyuridine followed by Hoecht 33258 flow cytometry. Proc. Natl. Acad. Sci. USA 80:2951–2955; 1983.PubMedCrossRefGoogle Scholar
  27. Reddel, R. R. The role of senescence and immortalization in carcinogenesis. Carcinogenesis 21:477–484; 2000.PubMedCrossRefGoogle Scholar
  28. Rieder, C. L.; Khodjakov, A Mitosis through the microscope: advances in seeing inside live dividing cells. Science 300:92–96; 2003.CrossRefGoogle Scholar
  29. Rittling, S. R.; Brooks, K. M.; Cristofalo, V. J.; Baserga, R. Expression of cell cycle-dependent genes in young and senescent WI-38 fibroblasts. Proc. Natl. Acad. Sci. USA 83:3316–3320; 1986.PubMedCrossRefGoogle Scholar
  30. Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Stampfer, M. R.; Haupt, L. M.; Tlsty, T. D. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633–637; 2001.PubMedCrossRefGoogle Scholar
  31. Saksela, E.; Moorhead, P. S. Aneuploidy in the degenerative phase of serial cultivation of human cell strains. Proc. Natl. Acad. Sci. USA 50:390–395; 1963.PubMedCrossRefGoogle Scholar
  32. Schneider, E. L.; Fowlkes, B. J. Measurement of DNA content and cell volume in senescent human fibroblasts utilizing flow multiparameter single cell analysis. Exp. Cell Res. 98:298–302; 1976.PubMedCrossRefGoogle Scholar
  33. Serrano, M.; Blasco, M. A. Putting the stress on senescence. Curr. Opinion Cell Biol. 13:748–753; 2001.PubMedCrossRefGoogle Scholar
  34. Sherwood, S. W.; Rush, D.; Ellsworth, J. L.; Schimke, R. T. Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc. Natl. Acad. Sci. USA 85:9086–9090; 1988.PubMedCrossRefGoogle Scholar
  35. Smith, J. R.; Pereira-Smith, O. M. Replicative senescence: implications for in vivo aging and tumor suppression. Science 273:63–67; 1996.PubMedCrossRefGoogle Scholar
  36. Solari, E.; Domenget, C.; Gire, V.; Woods, C.; Lazarides, E.; Rousset, B.; Jurdic, P. Multinucleated cells can continuously generate mononuclear cells in the absence of mitosis: a study of cells of the avian osteoclast lineage. J. Cell Sci. 108:3233–3241; 1995.PubMedGoogle Scholar
  37. Stampfer, M. R.; Yaswen, P. Human epithelial cell immortalization as a step in carcinogenesis. Cancer Letters 194:199–208; 2003.PubMedCrossRefGoogle Scholar
  38. Stein, G. H.; Atkins, L. Membrane-associated inhibitor of DNA synthesis in senescent human diploid fibroblasts: characterization and comparison to quiescent cell inhibitor. Proc. Natl. Acad. Sci. USA 83:9030–9034; 1986.PubMedCrossRefGoogle Scholar
  39. Thompson, K. V. A.; Holliday, R. Chromosome changes during the in vitro ageing of MRC-5 human fibroblasts. Exp. Cell Res. 96: 1–6; 1975.PubMedCrossRefGoogle Scholar
  40. Velloso, C. P.; Kumar, A.; Tanaka, E. M.; Brockes, J. P. Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell progression Differentiation 66:239–246; 2000.PubMedCrossRefGoogle Scholar
  41. Walen, K. H. Anchorage in dependent growth of SV40 transformed human epithelial cells from amniotic fluids: differences within and among cell donors. In Vitro 18:203–212; 1982.PubMedGoogle Scholar
  42. Walen, K. H. The origin of transformed cells; studies of spontaneous and induced cell transformation in cell cultures from marsupials, a snail, and human amniocytes. Cancer Genet. Cytogenet. 133:45–54; 2002.PubMedCrossRefGoogle Scholar
  43. Walen, K. H. Spontaneous cell transformation: karyoplasts derived from multinucleated cells cultures. In Vitro Cell. Dev. Biol. 40A: 150–158; 2004.CrossRefGoogle Scholar
  44. Walen, K. H. Budded karyoplasts from multinucleated fibroblast cells contain centrosomes and change their morphology to mitotic cells. Cell Biol. Int 29:1057–1065; 2005.PubMedCrossRefGoogle Scholar
  45. Wright, W. E.; Shay, J. W. Time telomeres and tumors: is cellular senescence more than an anticancer mechanism. Trends Cell Biol. 5:293–296; 1995.PubMedCrossRefGoogle Scholar
  46. Yanishevsky, R.; Mendelsohn, M. L.; Mayall, B. H.; Cristofalo, V. J. Proliferative capacity and DNA content of aging human diploid cells in culture: a cytophotometric and autoradiographic analysis. J. Cell Physiol. 84:165–170; 1974.PubMedCrossRefGoogle Scholar
  47. Zybina, E. V.; Zybina, T. G. Polytene chromosomes in mammalian cells. Int. Rev. Cytol. 165:53–119; 1996.PubMedCrossRefGoogle Scholar
  48. Zybina, E. V.; Zybina, T. G.; Bogdanova, M. S.; Stein, G. I. Whole-genome chromosome distribution during nuclear fragmentation of giant trophoblast cells of Microtus rossiaemeridionalis studied with the use of gonosomal chromatin arrangement. Cell Biol. Int. 29:1066–1070; 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  1. 1.Viral and Richettsial Disease LaboratoryCalifornia Department of Health ServicesRichmond
  2. 2.CROMOSRichmond

Personalised recommendations