Transient maintenance in bioreactor improves health of neuronal cells

  • Silvia Di Loreto
  • Pierluigi Sebastiani
  • Elisabetta Benedetti
  • Vincenzo Zimmitti
  • Valentina Caracciolo
  • Fernanda Amicarelli
  • Annamaria Cimini
  • Domenico Adorno
Articles Cell Growth/Differentiation/Apoptosis

Summary

To examine whether a neuronal cell suspension can be held in vitro for a relatively short period without compromising survival rates and functionality, we have set up an experimental protocol planning 24 h of suspension culture in a rotary wall vessel (RWV) bioreactor before plating in a conventional adherent system. Apoptosis measurement and activated caspase-8, −9, and −3 detection have demonstrated that survey of the cells was not affected. The activity of major antioxidant enzymes (AOE), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), was significantly decreased in RWV-maintained cells. A significant decrease of tumor necrosis factor-α (TNF-α) and inter-leukin-1β (IL-1β) is coupled with a level of activated nuclear factor-ϰB (NF-ϰB) protein significantly lower in RVW cells than in the control. On the contrary, the level of IL-6 expression did not change between the test and the control. A significant up-regulation of growth-associated protein-43 (GAP-43), peroxisome proliferator-activated receptor-β/δ (PPARβ/δ), and acyl-CoA synthetase 2 (ACS2) in RWV cells has been detected. We provide the evidence that primary neuronal cells, at an early stage of development, can be maintained in a suspension condition before adherent plating. This experimental environment does not induce detrimental effects but may have an activator role, leading cells to development and maturation in a tridimensional state.

Key words

aggregated cultures neurons apoptosis AOE PPARs cytokines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, H. E. Catalase. In: Bergmayer, H., ed. Methods in enzymatic analysis, 2nd ed. Wenheim: Verlag Chemic; 1974:673–684.Google Scholar
  2. Aigner, A.; Caroni, P. Absence of persistent spreading branching, and adhesion in GAP-43-depleted growth cones. J. Cell Biol. 128:647–660; 1995.PubMedCrossRefGoogle Scholar
  3. Amicarelli, F.; Ragnelli, A. M.; Aimola, P.; Bonfigli, A.; Colafarina, S.; Di Ilio, C.; Miranda, M. Age-dependent ultrastructural alterations and biochemical response of rat skeletal muscle after hypoxic or hyperoxic treatments. Biochim. Biophys. Acta 1453:105–114; 1999.PubMedGoogle Scholar
  4. Amicarelli, F.; Tiboni, G. M.; Colafarina, S.; Bonfigli, A.; Iammarrone, E.; Miranda, M.; Di Ilio, C. Antioxidant and GSH-related enzyme response to a single teratogenic exposure to the anticonvulsant phenytoin: temporospatial evaluation. Teratology 62:100–107; 2000.PubMedCrossRefGoogle Scholar
  5. Bales, K. R.; Du, Y.; Dodel, R. C.; Yan, G. M.; Hamilton-Byrd, E.; Paul, S. M. The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. Brain Res. Mol. Brain Res. 57:63–72; 1998.PubMedCrossRefGoogle Scholar
  6. Basu-Modak, S.; Braissant, O.; Escher, P.; Desvergne, B.; Honegger, P.; Wahli, W. Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J. Biol. Chem. 274:35881–35888; 1999.PubMedCrossRefGoogle Scholar
  7. Benjelloun, N.; Joly, L. M.; Palmier, B.; Plotkine, M.; Charriaut-Marlangue, C. Apoptotic mitochondrial pathway in neurones and astrocytes after neonatal hypoxia-ischaemia in the rat brain. Neuropathol. Appl. Neurobiol. 29:350–360; 2003.PubMedCrossRefGoogle Scholar
  8. Benowitz, L. I.; Routtenberg, A. GAP-43; an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20:84–91; 1997.PubMedCrossRefGoogle Scholar
  9. Bisby, M. A.; Tetzlaff, W. Changes in cytoskeletal protein synthesis following axon injury and during regeneration. Mol. Neurobiol. 6:107–123; 1992.PubMedGoogle Scholar
  10. Bonfoco, E.; Kraine, D.; Ankarcrona, M.; Nicotera, P.; Lipton, S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92:7162–7166; 1995.PubMedCrossRefGoogle Scholar
  11. Braissant, O.; Wahli, W. Differential expression of peroxisome proliferator-activated receptor-alpha,-beta, and-gamma during rat embryonic development. Endocrinology 139:2748–2754; 1998.PubMedCrossRefGoogle Scholar
  12. Cimini, A.; Benedetti, E.; Cristiano, L.; Sebastiani, P.; D'Amico, M. A.; D'Angelo, B.; Di Loreto, S. Expression of peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RXRs) in rat cortical neurons. Neuroscience 130:325–337; 2005.PubMedCrossRefGoogle Scholar
  13. Cohen, G. M. Caspases: the executioners of apoptosis. Biochem. J. 326:1–16; 1997.PubMedGoogle Scholar
  14. Cowan, C. M.; Roskams, A. J. Caspase-3 and caspase-9 mediate developmental apoptosis in the mouse olfactory system. J. Comp. Neurol. 474:136–148; 2004.PubMedCrossRefGoogle Scholar
  15. Crestini, A.; Zona, C.; Sebastiani, P.; Pieri, M.; Caracciolo, V.; Malvezzi-Campeggi, L.; Confaloni, A.; Di Loreto, S. Effects of simulated microgravity on the development and maturation of dissociated cortical neurons. In Vitro Cell. Dev. Biol. 40A:159–165; 2004.CrossRefGoogle Scholar
  16. Di Loreto, S.; Maccarone, R.; Corvetti, L.; Sebastiani, P.; Piancatelli, D.; Adorno, D. Differential modulation of interleukin-6 expression by interleukin-1β in neuronal and glial cultures. Eur. Cytokine Netw. 14:97–102; 2003.PubMedGoogle Scholar
  17. Erslher, W. B.; Keller, E. T. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu. Rev. Med. 51:245–270; 2000.CrossRefGoogle Scholar
  18. Gervais, F. G.; Xu, D.; Robertson, G. S., et al. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta procursor protein and amyloidogenic A beta peptide formation. Cell 97:395–406; 1999.PubMedCrossRefGoogle Scholar
  19. Gruener, R.; Hoeger, G. Vector-free gravity disrupts synapse formation in cell culture. Am. J. Physiol. 258:489–494; 1990.Google Scholar
  20. Gruener, R.; Hoeger, G. Vector-averaged gravity alters myocyte and neuron properties in cell culture. Aviat. Space. Environ. Med. 62:1159–1165; 1991.PubMedGoogle Scholar
  21. Hengartner, M. O. The biochemistry of apoptosis. Nature 407:770–776; 2000.PubMedCrossRefGoogle Scholar
  22. Honegger, P.; Lenori, D.; Favrod, P. Growth and differentiation of aggregating fetal brain cells in a serum-free defined medium. Nature 282:305–308; 1979.PubMedCrossRefGoogle Scholar
  23. Kitamura, Y.; Shimohama, S.; Koike, H.; Kakimura, J.; Matsuoka, Y.; Nomura, Y.; Gebike-Haerter, P. J.; Taniguchi, T. Increased expression of cyclooxygenase and peroxisome proliferator-activated receptor-γ in Alzheimer's disease brains. Biochem. Biophys. Res. Commun. 254:582–586; 1999.PubMedCrossRefGoogle Scholar
  24. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.PubMedCrossRefGoogle Scholar
  25. Lelkes, P. I.; Galvan, D. L.; Hayman, G. T.; Goodwin, T. J.; Chatman, D. Y.; Cherian, S.; Garcia, R. M.; Unsworth, B. R. Simulated microgravity conditions enhance differentiation of cultured PC12 cells towards the neuroendocrine phenotype. In Vitro Cell. Dev. Biol. 34A:316–325; 1998.Google Scholar
  26. Marszalek, J. R.; Kitidis, C.; Dararutana, A.; Lodish, H. F. Acyl-CoA synthetase 2 overexpression enhances fatty acid internalization and neurite outgrowth. J. Biol. Chem. 279:23882–23891; 2004.PubMedCrossRefGoogle Scholar
  27. Marx, C. E.; Jarskog, L. F.; Lauder, J. M.; Lieberman, J. A.; Gilmore, J. H. Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biol. Psychiatry 50:743–749; 2001.PubMedCrossRefGoogle Scholar
  28. Mattson, M. P.; Camandola, S. NF-ϰB in neuronal plasticity and neuro-degenerative disorders. J. Clin. Invest. 107:247–254; 2001.PubMedCrossRefGoogle Scholar
  29. Medina, J.; Tabernero, A. Astrocyte-synthesized oleic acid behaves as neurotrophic factor for neurons. J. Physiol. 96:265–271; 2002.Google Scholar
  30. Michalik, L.; Desvergne, B.; Dreyer, C.; Gavillet, M.; Laurini, R. N.; Wahli, W. PPAR expression and function during vertebrate development. Int. J. Dev. Biol. 46:105–114; 2002.PubMedGoogle Scholar
  31. Nomura, Y. Neuronal apoptosis and protection: effects of nitric oxide and endoplasmic reticulum-related proteins. Biol. Pharm. Bull. 27:961–963; 2004.PubMedCrossRefGoogle Scholar
  32. Oestreicher, A. B.; De Graan, P. N.; Gispen, W. H.; Verhaagen, J.; Schrama, L. H. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog. Neurobiol. 53:627–686; 1997.PubMedCrossRefGoogle Scholar
  33. Paglia, D. E.; Valentine, W. N. Studies on the qualitative and quantitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158–169; 1967.PubMedGoogle Scholar
  34. Saluja, I.; Grannemann, J. G.; Skoff, R. PPAR delta agonists stimulate oligodendrocyte differentation in tissue culture. Glia 33:191–204; 2001.PubMedCrossRefGoogle Scholar
  35. Skene, J. H. Axonal growth-associated proteins. Annu. Rev. Neurosci. 12:127–156; 1989.PubMedCrossRefGoogle Scholar
  36. Slee, E. A.; Harte, M. T.; Kluck, R. M., et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, −3, −6, −7, −8, and −10 in a caspase-9-dependent manner. J. Cell Biol. 144:281–292; 1999.PubMedCrossRefGoogle Scholar
  37. Sun, M.; Zigman, S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autooxidation. Anal. Biochem. 90:81–89; 1978.PubMedCrossRefGoogle Scholar
  38. Tabernero, A.; Lavado, E. M.; Granada, B.; Velasco, A.; Medina, J. Neuronal differentiation is triggered by oleic acid synthetisized and released by astrocytes. J. Neurochem. 79:606–616; 2001.PubMedCrossRefGoogle Scholar
  39. Towbin, H.; Stahelin, T.; Gordon, L. Electrophoretic transfer of proteins from gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.PubMedCrossRefGoogle Scholar
  40. Weaver, J. D.; Huang, M. H.; Albert, M.; Harris, T.; Rowe, J. W.; Seeman, T. E. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59:371–378; 2002.PubMedGoogle Scholar
  41. Wei, J.; Xu, H.; Davies, J. L.; Hemmings, G. P. Increase of plasma IL-6 concentration with age in healthy subjects. Life Sci. 51:1953–1956; 1992.PubMedCrossRefGoogle Scholar
  42. Woods, J. W.; Tanen, M.; Figueroa, D. J.; Biswas, C.; Zychand, E.; Moller, D. E.; Austin, C. P.; Berger, J. P. Localization of PPARdelta in murine central nervous system: expression in oligodendrocytes and neurons. Brain Res. 975:10–21; 2003.PubMedCrossRefGoogle Scholar
  43. Yamada, M.; Iwatsubo, T.; Mizuno, Y.; Mochizuki, H. Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease. J. Neurochem. 91:451–461; 2004.PubMedCrossRefGoogle Scholar
  44. Yan, X. X.; Najbauer, J.; Woo, C. C.; Dashtipour, K.; Ribak, C. E.; Leon, M. Expression of active caspase-3 in mitotic and postmitotic cells of the rat forebrain. J. Comp. Neurol. 433:4–22; 2001.PubMedCrossRefGoogle Scholar
  45. Yankner, B. A.; Benowitz, L. I.; Villa-Komaroff, L.; Neve, R. L. Transfection of PC12 cells with the human GAP-43 gene: effects on neurite outgrowth and regeneration. Mol. Brain Res. 7:39–44; 1990.PubMedCrossRefGoogle Scholar
  46. Ye, S.; Johnson, R. W. Regulation of interleukin-6 gene expression in brain of aged mice by nuclear factor kappa B. J. Neuroimmunol. 117:87–96; 2001.PubMedCrossRefGoogle Scholar
  47. Ye, S. M.; Johnson, R. W. Increased interleukin-6 expression by microglia from brain of aged mice. J. Neuroimmunol. 93:139–148; 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  • Silvia Di Loreto
    • 2
    • 1
  • Pierluigi Sebastiani
    • 2
  • Elisabetta Benedetti
    • 1
  • Vincenzo Zimmitti
    • 1
  • Valentina Caracciolo
    • 1
  • Fernanda Amicarelli
    • 1
  • Annamaria Cimini
    • 1
  • Domenico Adorno
    • 2
  1. 1.Department of Basic and Applied BiologyUniversity of L'AquilaL'AquilaItaly
  2. 2.Institute of Organ Transplants and ImmunocytologyConsiglio Nazionale delle RicercheL'AquilaItaly

Personalised recommendations