Human embryonic stem cell (hES) colonies display a higher degree of spontaneous differentiation when passaged at lower densities

  • Boon Chin Heng
  • Hua Liu
  • Abdul Jalil Rufaihah
  • Tong Cao


Human embryonic stem (hES) cells require cooperative interactions with each other for their survival. Previously, the size of hES cell clumps has been reported to be an important factor in determining their viability during routine serial passage. However, the effects of seeding density of the hES cell clumps per se have not yet been investigated. Therefore, this study attempted to compare the level of spontaneous differentiation of hES colonies passaged at two different split ratios (1∶3 and 1∶8) of a single confluent well of a six-well dish. After 7 d of in vitro culture following serial passage, hES colonies were assigned into three grades according to their degree of spontaneous differentiation: (1) Grade A, which was completely or mostly undifferentiated; (2) grade B, which was partially differentiated; and (3) grade C, which was mostly differentiated. Assessment of the degree of spontaneous differentiation was based on morphological observations under bright-field and phase-contrast microscopy, as well as on immunocytochemical staining for the pluripotency markers SSEA-3 and TRA-1-81. We observed that, at a split ratio of 1∶3, the percentages of grade A, B, and C colonies were 89.5, 8.8, and 1.7%, respectively. This was significantly different from the corresponding values of 52.7, 31.3, and 16.0%, respectively, obtained at a split ratio of 1∶8. Hence, our results indicated that a lower passage density led to a higher degree of spontaneous differentiation of hES colonies.

Key words

seeding density differentiation embryonic human passage stem cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amit, M.; Carpenter, M. K.; Inokuma, M. S.; Chiu, C. P.; Harris, C. P.; Waknitz, M. A.; Itskovitz-Eldor, J.; Thomson, J. A. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227:271–278; 2000.PubMedCrossRefGoogle Scholar
  2. Amit, M.; Margulets, V.; Segev, H.; Shariki, K.; Laevsky, I.; Coleman, R.; Itskovitz-Eldor, J. Human feeder layers for human embryonic stem cells. Biol. Reprod. 68:2150–2156; 2003.PubMedCrossRefGoogle Scholar
  3. Amit, M.; Shariki, C.; Margulets, V.; Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70:837–845; 2004.PubMedCrossRefGoogle Scholar
  4. Chen, D.; Lewis, R. L.; Kaufman, D. S. Mouse and human embryonic stem cell models of hematopoiesis: past, present, and future. Biotechniques 35:1253–1261; 2003.PubMedGoogle Scholar
  5. Cowan, C. A.; Klimanskaya, I.; McMahon, J.; Atienza, J.; Witmyer, J.; Zucker, J. P.; Wang, S.; Morton, C. C.; McMahon, A. P.; Powers, D.; Melton, D. A. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350:1353–1356; 2004.PubMedCrossRefGoogle Scholar
  6. Eisenberg, L. M.; Kubalak, S. W.; Eisenberg, C. A. Stem cells and the formation of the myocardium in the vertebrate embryo. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 276:2–12; 2004.PubMedCrossRefGoogle Scholar
  7. Gerecht-Nir, S.; Itskovitz-Eldor J. Cell therapy using human embryonic stem cells. Transpl. Immunol. 12:203–209; 2004.PubMedCrossRefGoogle Scholar
  8. Gribaldo, L.; Alison, M.; Andrews, P. W.; Bremer, S.; Donovan, P. J.; Knaan-Shanzer, S.; Mertelsmann, R.; Spielmann, H.; Testa, N. G.; Triffitt, J. T.; Zipori, D.; de Wynter E. Meeting summary: European workshop on stem cells, European Centre for the Validation of Biomedical Testing Methods, Institute for Health and Consumer Protection, Joint Research Centre, Ispra, Italy, November 21–23, 2001. Exp. Hematol. 30:628–633; 2002.PubMedCrossRefGoogle Scholar
  9. Martin, M. J.; Muotri, A.; Gage, F.; Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11:228–232; 2005.PubMedCrossRefGoogle Scholar
  10. NIH backgrounder on stem cells. Date accessed: 10 April 2005. news/backgrounders/stemcellbackgrounder.htmGoogle Scholar
  11. Reubinoff, B. E.; Pera, M. F.; Fong, C. Y.; Trounson, A.; Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18:399–404; 2000.PubMedCrossRefGoogle Scholar
  12. Richards, M.; Fong, C. Y.; Chan, W. K.; Wong, P. C.; Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20:933–936; 2002.PubMedCrossRefGoogle Scholar
  13. Richards, M.; Fong, C. Y.; Tan, S.; Chan, W. K.; Bongso, A. An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22:779–789; 2004a.PubMedCrossRefGoogle Scholar
  14. Richards, M.; Tan, S. P.; Tan, J. H.; Chan, W. K.; Bongso, A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22:51–64; 2004b.PubMedCrossRefGoogle Scholar
  15. Rohwedel, J.; Guan, K.; Hegert, C.; Wobus, A. M. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity, and embryotoxicity studies: present state and future prospects. Toxicol. In Vitro 15:741–753; 2001.PubMedCrossRefGoogle Scholar
  16. Rosler, E. S.; Fisk, G. J.; Ares, X.; Irving, J.; Miura, T.; Rao, M. S.; Carpenter, M. K. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229:259–274; 2004.PubMedCrossRefGoogle Scholar
  17. Sathananthan, H.; Pera, M.; Trounson, A. The fine structure of human embryonic stem cells. Reprod. Biomed. Online 4:56–61; 2002.PubMedCrossRefGoogle Scholar
  18. Stojkovic, P.; Lako, M.; Przyborski, S.; Stewart, R.; Armstrong, L.; Evans, J.; Zhang, X.; Stojkovic, M. Human-serum matrix supports undifferentiated growth of human embryonic stem cells. Stem Cells 23(7):895–902; 2005.PubMedCrossRefGoogle Scholar
  19. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147; 1998.PubMedCrossRefGoogle Scholar
  20. Wang, G.; Zhang, H.; Zhao, Y.; Li, J.; Cai, J.; Wang, P.; Meng, S.; Feng, J.; Miao, C.; Ding, M.; Li, D.; Deng, H. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem. Biophys. Res. Commun. 330:934–942; 2005.PubMedCrossRefGoogle Scholar
  21. WiCell Research Institute Inc. Introduction to human embryonic stem cell culture methods—part II (January 2003). Date accessed: 10 April 2005. Scholar
  22. Xu, C.; Inokuma, M. S.; Denham, J.; Golds, K.; Kundu, P.; Gold, J. D.; Carpenter, M. K. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19:971–974; 2001.PubMedCrossRefGoogle Scholar
  23. Xu, R. H.; Peck, R. M.; Li, D. S.; Feng, X.; Ludwig, T.; Thomson, J. A. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods. 2:185–190; 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  • Boon Chin Heng
    • 2
  • Hua Liu
    • 2
  • Abdul Jalil Rufaihah
    • 1
  • Tong Cao
    • 2
  1. 1.Department of Surgery, Faculty of MedicineNational University of SingaporeSingapore
  2. 2.Stem Cell Laboratory, Faculty of DentistryNational University of SingaporeSingapore

Personalised recommendations