Advertisement

Effects of Ulmus davidiana planch on mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen, and collagenase-1 in bone cells

  • Sung-Koo Kang
  • Kap-Sung Kim
  • Yu-Seok Byun
  • Seok-Jong Suh
  • Un-Ho Jim
  • Kyung-Ho Kim
  • In-Seon Lee
  • Cherl-Ho KimEmail author
Articles Toxicology/Chemical Carcinogenesis

Summary

Ulmus davidiana Planch (Ulmaceae) (UD) long has been known to have anti-inflammatory and protective effects on damaged tissue, inflammation, and bone among other functions. The herbal medicine also is being used in Oriental medicine to treat osteoporosis. In a preliminary study, treatment of osteoclasts containing long bone cells with the water extract of UD bark prevented the intracellular maturation of cathepsin K (cat K), and thus, it was considered that UD is a pro-drug of a potent bone-resorption inhibitor. To further clarify the role of UD in ossification, we investigated the effects of UD on the proliferation and differentiation of osteoblastic cell lines in vitro. In this study, we assessed the effects of UD on osteoblastic differentiation in nontransformed osteoblastic cells (MC3T3-E1) and rat bone marrow cells. UD enhanced alkaline phosphatase (ALP) activity and mineralization in a dose- and time-dependent fashion. This stimulatory effect of the UD was observed at relatively low doses (significant at 5–50 μg/ml and maximal at 50 μg/ml). Northern blot analysis showed that UD (100 μg/ml) increases in bone morphogenic protein-2 as well as ALP mRNA concentrations in MC3T3-E1 cells. UD slightly increased in type I collagen mRNA abundance throughout the culture period, whereas it markedly inhibited the gene expression of collagenase-1 between days 15 and 20 of culture. These results indicate that UD has anabolic effects on bone through the promotion of osteoblastic differentiation, suggesting that is could be used for the treatment of common metabolic bone diseases such as osteoporosis.

Key words

Ulmus davidiana Planch (Ulmaceae) Korean herbal medicine osteoclast osteoblast mineralization bone morphogenic protein-2 alkaline phosphatase collagenase-1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnusdei, D.; Comporeaale, A. Zacchei, F., et al. Effects of ipriflavone on bone mass and bone remodeling in patients with established postmenopausal osteoporosis. Curr. Ther. Res. 51:82–91; 1992.Google Scholar
  2. Ettinger, B.; Genant, H. K.; Cann, C. E. Postmenopausal bone loss is prevented by treatment with low-dosage estrogen with calcium. Ann. Intern. Med. 106:40–45; 1987.PubMedGoogle Scholar
  3. Franceschi, R. T.; Iyer, B. S. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J. Bone Miner. Res. 7:235–246; 1992.PubMedGoogle Scholar
  4. Gazzerro, E.; Gangji, V.; Canalis, E. Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J. Clin. Invest. 102:2106–2114; 1998.PubMedCrossRefGoogle Scholar
  5. Genant, H. K.; Baylink, D. J.; Gallapher, J. C. Estrogens in the prevention of osteoporosis in postmenopausal women. Am. J. Obset. Gynecol. 161:1842–1846; 1989.Google Scholar
  6. Gruber, H. E.; Ivey, J. L.; Baylink, D. L.; Mathews, M.; Nelp, W. B.; Sisom, B.; Chestnut, C. H. Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism 33:295–303; 1984.PubMedCrossRefGoogle Scholar
  7. Heo, J. (1613 A.D.). Dong Ui Bo Gam [The precious mirror of Oriental medicine]. 1999. Seoul: Namsangdang.Google Scholar
  8. Hong, S. N.; Jeong, J. C. Effects of complex extracts containing Drynariae Rhizoma on suppression of collagenolysis and bone resorption in mouse calvarial osteoblasts. Kor. J. Oriental Med. 1(1):33–41; 2000.Google Scholar
  9. Jeong, J. C.; Kang, S. K.; Yoon, C. H.; Jeong, C. W.; Kim, H. M.; Lee, Y. C.; Chang, Y. C.; Kim, C. H. Inhibition of Drynariae Rhizoma extracts on bone resorption mediated by processing of cathepsin K in cultured mouse osteoclasts. Int. Immunopharm. 3:1685–1697; 2003.CrossRefGoogle Scholar
  10. Jun, C. D.; Pae, H. D.; Kim, Y. C.; Jeong, S. J.; Yoo, J. C.; Lee, E. J.; Choi, B. M.; Chae, S. W.; Park, R. K.; Chung, H. T. Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages. J Ethnopharmacol. 62:129–135; 1998.PubMedCrossRefGoogle Scholar
  11. Kalu, D. N. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 15:175–192; 1991.PubMedCrossRefGoogle Scholar
  12. Kawane, T.; Horiuchi, N. Insulin-like growth factor I suppresses parathyroid hormone (PTH)/PTH-related protein receptor expression via a mitogen-activated protein kinase pathway in UMR-106 osteoblast-like cells. Endocrinology 140:871–879; 1999.PubMedCrossRefGoogle Scholar
  13. Kim, H. C. Herbalogy. 2000. Seoul: Young Lim Sa.Google Scholar
  14. Kim, J. P.; Kim, W. G.; Koshino, H.; Jung, J.; Yoo, I. D. Sesquiterpene O-naphthoquinones from the root bark of Ulmus davidiana. Phytochemistry 43:425–430; 1996.PubMedCrossRefGoogle Scholar
  15. Kim, K. S.; Lee, S. D.; Kim, K. H.; Kil, S. Y.; Chung, K. H.; Kim, C. H. Suppressive effects of a water extract of Ulmus davidiana Planch (Ulmaceae) on collagen-induced arthritis in mice. Journal of Ethnopharmacology 97:65–71; 2005.PubMedCrossRefGoogle Scholar
  16. Lee, S. J. 1996. Korean Folk Medicine, Monographs Series No. 3. Publishing Center of Seoul National University, Seoul, South Korea, 89 pp.Google Scholar
  17. Lian, J. B.; Stein, G. S.; Canalis, E.; Robey, P. G.; Boskey, A. L. Bone formation: Osteoblast lineage cells, growth factors, matrix proteins, and the mineralization process primer on the metaboric bone diseases and disorders of mineral metabolism, (Favus, M. J., ed.). Lippincott Williams & Wilkins, Philadelphia; 1999:14–29.Google Scholar
  18. Maniatopoulos, C.; Sodek, J.; Melcher, A. H. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 254:317–330; 1988.PubMedCrossRefGoogle Scholar
  19. Morris, H. A.; Need, A. G.; Horowitz, M.; O'Leughlin, P. D.; Nordin, B. E. C. Calcium adsorption in normal and osteoporotic postmenopausal women. Calcif. Tissue Int. 48:240–243; 1991.CrossRefGoogle Scholar
  20. Phillipson, J. D.; Anderson, L. A. Ethnopharmacology and western medicine. J. Ethnopharmacol. 25:61–72; 1989.PubMedCrossRefGoogle Scholar
  21. Quarles, L. D.; Yohay, D. A.; Lever, L. W.; Caton, R.; Wenstrup, R. J. Distinct proliferative and differentiated stages of mouse MC3T3-E1 cells in culture: An in vitro model of osteoblast development. J. Bone Miner. Res. 7:683–689; 1992.PubMedCrossRefGoogle Scholar
  22. Shi, X. C. Chinese-English terminology of traditional Chinese medicine. Human Science Publishing Co. Chian; 1983:71–98.Google Scholar
  23. Shizhen, L. (1590 A. D.). Bon Cho Gang Mok [Compendium of materia medica]. ChungKuK ChungEuiHak, Peking; 1978.Google Scholar
  24. Spelsberg, T. C.: Subramaniam, M.; Riggs, B. L.; Khosla, S. The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol. Endocrinol. 13:819–828; 1999.PubMedCrossRefGoogle Scholar
  25. Stanford, C. M.; Jacobson, P. A.; Eanes, E. D.; Lembke, L. A.; Midura, R. J. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J. Biol. Chem. 270:9420–9428; 1995.PubMedCrossRefGoogle Scholar
  26. Tunner, C. H. Toward a cure for osteoporosis: Reversal of excessive bone fragility. Osteoporosis Int. 2: 12–19; 1991.CrossRefGoogle Scholar
  27. Varghese, S.; Canalis, E. Regulation of collagenase-3 by bone morphogenetic protein-2 in bone cell cultures. Endocrinology 138:1035–1040; 1997.PubMedCrossRefGoogle Scholar
  28. Xiu, R. J. Microcirculation and traditional Chinese medicine. JAMA 269:1755–1757; 1988.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  • Sung-Koo Kang
    • 3
  • Kap-Sung Kim
    • 2
  • Yu-Seok Byun
    • 2
  • Seok-Jong Suh
    • 3
  • Un-Ho Jim
    • 3
  • Kyung-Ho Kim
    • 2
  • In-Seon Lee
    • 3
  • Cherl-Ho Kim
    • 1
    Email author
  1. 1.Department of Biological ScienceSungkyunkwan UniversitySuwon City, Kyunggi-DoKorea
  2. 2.Department of Oriental MedicineDongguk UniversityKyungjuKorea
  3. 3.The Center of Traditional Microorganisms ResourcesKeimyung UniversityDaeguKorea

Personalised recommendations