In vitro differentiation and mineralization of human dental pulp cells induced by dentin extract

  • Jun Liu
  • Taocong Jin
  • Helena H. Ritchie
  • Anthony J. Smith
  • Brian H. Clarkson
Articles Cell Growth/Differentiation/Apoptosis

Summary

In this study, the progenitor cells isolated from the human dental pulp were used to study the effects of ethylenediaminetetraacetic acid-soluble dentin extract (DE) on their differentiation and mineralization to better understand tissue injury and repair in the tooth. Mineralization of the matrix was increasingly evident at 14, 21, and 28 d after treatment with a mineralization supplement (MS) (ascorbic acid [AA], β-glycerophosphate [β-GP]) and MS+DE. Real-time polymerase chain reaction results showed type I collagen upregulation after the addition of MS+DE at 7 d. Alkaline phosphatase was downregulated after the mineralization became obvious at 14 d. Bone sialoprotein was shown to be upregulated in the mineralized cell groups at all time points and dentin sialophosphoprotein after 7 d. Core binding factor a 1 was upregulated by the treatment of MS and DE at 7, 14, and 21 d. These results indicated that the MS of AA, β-GP, and DE synergistically induced cell differentiation of pulp progenitor cells into odontoblast-like cells and induced in vitro mineralization.

Key words

progenitor cell dentin sialophosphoprotein bone sialoprotein core binding factor a 1 mineralization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. About, I.; Bottero, M. J.; de Denato, P.; Camps, J.; Franquin, J. C.; Mitsiadis, T. A. Human dentin production in vitro. Exp. Cell Res. 258:33–41; 2000.PubMedCrossRefGoogle Scholar
  2. Begue-Kirn, C.; Krebsbach, P. H.; Bartlett, J. D.; Butler, W. T. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: toothspecific molecules that are distinctively expressed during murine dental differentiation. Eur. J. Oral Sci. 106:963–970; 1998a.PubMedCrossRefGoogle Scholar
  3. Begue-Kirn, C.; Ruch, J. V.; Ridall, A. L.; Butler, W. T. Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. Eur. J. Oral Sci. 106(Suppl. 1):254–259; 1998b.PubMedGoogle Scholar
  4. Begue-Kirn, C.; Smith, A. J.; Loriot, M.; Kupferle, C.; Ruch, J. V.; Lesot, H. Comparative analysis of TGF betas, BMPs, IGF1, msxs, fibronectin, osteonectin and bone sialoprotein gene expression during normal and in vitro-induced odontoblast differentiation. Int. J. Dev. Biol. 38:405–420; 1994.PubMedGoogle Scholar
  5. Begue-Kirn, C.; Smith, A. J.; Ruch, J. V.; Wozney, J. M.; Purchio, A.; Hartmann, D.; Lesot, H. Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int. J. Dev. Biol. 36:491–503; 1992.PubMedGoogle Scholar
  6. Bianco, P.; Siher, L. W.; Young, M. F.; Termine, J. D.; Robey, P. G. Expression of bone sialoprotein (BSP) in developing human tissues. Calcif. Tissue Int. 49:421–426; 1991.PubMedCrossRefGoogle Scholar
  7. Boskey, A. L. Osteopontin and related phosphorylated sialoproteins: effects on mineralization. Ann. N. Y. Acad. Sci. 760:249–256; 1995.PubMedCrossRefGoogle Scholar
  8. Cassidy, N.; Fahey, M.; Prime, S. S.; Smith, A. J. Comparative analysis of transforming growth factor-beta isoforms 1–3 in human and rabbit dentine matrices. Arch. Oral Biol. 42:219–223; 1997.PubMedCrossRefGoogle Scholar
  9. Clarkson, B. H.; McCurdy, S. P.; Gaz, D.; Hand, A. R. Effects of phosphoprotein on collagen fibril formation in vitro. Arch. Oral Biol. 38:737–743; 1993.PubMedCrossRefGoogle Scholar
  10. Decup, F.; Six, N.; Palmier, B.; Buch, D.; Lasfargues, J. J.; Salih, E.; Goldberg, M. Bone sialoprotein-induced reparative dentinogenesis in the pulp of rat's molar. Clin. Oral Investig. 4:110–119; 2000.PubMedCrossRefGoogle Scholar
  11. D'Souza, R. N.; Aberg, T.; Gaikwad, J.; Cavender, A.; Owen, M.; Karsenty, G.; Thesleff, I. Cbfal is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 126:2911–2920; 1999.PubMedGoogle Scholar
  12. Finkelman, R. D. Growth factors in bones and teeth. J. Calif. Dent. Assoc. 20:23–29; 1992.PubMedGoogle Scholar
  13. Finkelman, R. D.; Mohan, S.; Jennings, J. C.; Taylor, A. K.; Jepsen, S.; Baylink, D. J. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J. Bone Miner. Res. 5:717–723; 1990.PubMedGoogle Scholar
  14. Fuchs, E.; Segre, J. A. Stem cells: a new lease on life. Cell 100:143–155; 2000.PubMedCrossRefGoogle Scholar
  15. George, A.; Sabsay, B.; Simonian, P. A.; Veis, A. Characterization of a novel dentin matrix acidic phosphoprotein. Implication for induction of biominiralization. J. Biol. Chem. 268:12624–12630; 1993.PubMedGoogle Scholar
  16. Goldberg, M.; Six, N.; Decup, F.; Buch, D.; Soheili Majd, E.; Lasfargues, J. J.; Salih, E.; Stanislawski, L. Application of bioactive molecules in pulp-capping situations. Adv. Dent. Res. 15:91–95; 2001.PubMedGoogle Scholar
  17. Gronthos, S.; Brahim, J.; Li, W., et al. Stem cell properties of human dental pulp stem cells. J. Dent. Res. 81:531–535; 2002.PubMedGoogle Scholar
  18. Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P. G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 97:13625–13630; 2000.PubMedCrossRefGoogle Scholar
  19. Hanks, C. T.; Sun, Z. L.; Fang, D. N.; Edwards, C. A.; Wataha, J. C.; Ritchie, H. H.; Butler, W. T. Cloned 3T6 cell line from CD-1 mouse fetal molar dental papillae. Connect. Tissue Res. 37:233–249; 1998.PubMedGoogle Scholar
  20. Hao, J.; Shi, S.; Niu, Z.; Xun, Z.; Yue, L.; Xiao, M. Mineralized nodule formation by human dental papilla cells in culture. Eur. J. Oral Sci. 105:318–324; 1997.PubMedGoogle Scholar
  21. Hunter, G. K.; Goldberg, H. A. Nucleation of hydroxyapatite by bone sialoprotein. Proc. Natl. Acad. Sci. USA 90:8562–8565; 1993.PubMedCrossRefGoogle Scholar
  22. Hunter, G. K.; Hauschka, P. V.; Poole, A. R.; Rosenberg, L. C.; Goldberg, H. A. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem. J. 317(Pt. 1):59–64; 1996.PubMedGoogle Scholar
  23. Kuboki, Y.; Fujisawa, R.; Aoyama, K.; Sasaki, S. Calcium-specific precipitation of dentin phosphoprotein: a new method of purification and the significance for the mechanism of calcification. J. Dent. Res. 58:1926–1932; 1979.PubMedGoogle Scholar
  24. Liang, R. F.; Nishimura, S.; Sato, S. Effects of epidermal growth factor and transforming growth factor-beta on insulin-induced differentiation in rat dental pulp cells. Arch. Oral Biol. 37:789–795; 1992.PubMedCrossRefGoogle Scholar
  25. Linde, A.; Lussi, A.; Crenshaw, M. A. Mineral induction by immobilized polyanionic proteins. Calcif. Tissue Int. 44:286–295; 1989.PubMedCrossRefGoogle Scholar
  26. Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408; 2001.PubMedCrossRefGoogle Scholar
  27. MacDougall, M.; Simmons, D.; Luan, X.; Nydegger, J.; Feng, J.; Gu, T. T. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single trnascript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J. Biol. Chem. 272:835–842; 1997.PubMedCrossRefGoogle Scholar
  28. McCurdy, S. P.; Clarkson, B. H.; Feagin, F. F. Comparison of phosphoprotein isolated from mature and immature human tooth roots. Arch. Oral Biol. 37:1057–1065; 1992.PubMedCrossRefGoogle Scholar
  29. Melin, M.; Joffre-Romeas, A.; Farges, J. C.; Couble, M. L.; Magloire, H.; Bleicher, F. Effects of TGFbetal on dental pulp cells in cultured human tooth slices. J. Dent. Res. 79:1689–1696; 2000.PubMedGoogle Scholar
  30. Nakashima, M. The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Arch. Oral. Biol. 37:231–236; 1992.PubMedCrossRefGoogle Scholar
  31. Nakashima, M.; Nagasawa, H.; Yamada, Y.; Reddi, A. H. Regulatory role of transforming growth factor-beta, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev. Biol. 162:18–28; 1994.PubMedCrossRefGoogle Scholar
  32. Narayanan, K.; Srinivas, R.; Ramachandran, A.; Hao, J.; Quinn, B.; George, A. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc. Natl. Acad. Sci. USA 98:4516–4521; 2001.PubMedCrossRefGoogle Scholar
  33. Ogata, Y.; Niisato, N.; Furuyama, S.; Cheifetz, S.; Kim, R. H.; Sugiya, H.; Sodek, J. Transforming growth factor-beta 1 regulation of bone sial-oprotein gene transcription: identification of a TGF-beta activation element in the rat BSP gene promoter. J. Cell Biochem. 65:501–512; 1997.PubMedCrossRefGoogle Scholar
  34. Ouyang, Y.; Li, Y.; Liu, X. [Experimental study on the effect of restorative dentin formation with human dentin phosphoprotein in immature permanent teeth of minipig]. Zhonghua Kou qiang Yi Xue Za Zhi. 34:295–297; 1999.PubMedGoogle Scholar
  35. Phillips, B. W.; Belmonte, N.; Vernochet, C.; Ailhaud, G.; Dani, C. Compactin enhances osteogenesis in murine embryonic stem cells. Biochem. Biophys. Res. Commun. 284:478–484; 2001.PubMedCrossRefGoogle Scholar
  36. Prince, M.; Banerjee, C.; Javed, A.; Green, J.; Lian, J. B.; Stein, G. S.; Bodine, P. V.; Komm, B. S. Expression and regulation of Runx2/Cbfal and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J. Cell Biochem. 80:424–440; 2001.PubMedCrossRefGoogle Scholar
  37. Qin, C.; Brunn, J. C.; Cadena, E.; Ridall, A.; Butler, W. T. Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts. Connect. Tissue Res. 44(Suppl. 1):179–183; 2003.PubMedGoogle Scholar
  38. Qin, C.; Brunn, J. C.; Cadena, E.; Ridall, A.; Tsujigiwa, H.; Nagatsuka, H.; Nagai, N.; Butler, W. T. The expression of dentin sialophosphoprotein gene in bone. J. Dent. Res. 81:392–394; 2002.PubMedGoogle Scholar
  39. Ritchie, H.; Wang, L. H. A mammalian bicistronic transcript encoding two dentin-specific proteins. Biochem. Biophys. Res. Commun. 231:425–428; 1997.PubMedCrossRefGoogle Scholar
  40. Ritchie, H. H.; Berry, J. E.; Somerman, M. J., et al. Dentin sialoprotein (DSP) transcripts: developmentally-sustained expression in odontoblasts and transient expression in pre-ameloblasts. Eur. J. Oral. Sci. 105:405–413; 1997.PubMedGoogle Scholar
  41. Ritchie, H. H.; Wang, L. H. Sequence determination of an extremely acidic rat dentin phosphoprotein. J. Biol. Chem. 271:21695–21698; 1996.PubMedCrossRefGoogle Scholar
  42. Saygin, N. E.; Tokiyasu, Y.; Giannobile, W. V.; Somerman, M. J. Growth factors regulate expression of mineral associated genes in cementoblasts. J. Periodontol. 71:1591–1600; 2000.PubMedCrossRefGoogle Scholar
  43. Shirakawa, M.; Shiba, H.; Nakanishi, K.; Ogawa, T.; Okamoto, H.; Nakashima, K.; Noshiro, M.; Kato, Y. Transforming growth factor-beta-1 reduces alkaline phosphatase mRNA and activity and stimulates cell proliferation in cultures of human pulp cells. J. Dent. Res. 73:1509–1514; 1994.PubMedGoogle Scholar
  44. Smith, A. J. Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J. Dent. Educ. 67:678–689; 2003.PubMedGoogle Scholar
  45. Smith, A. J.; Lesot, H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit. Rev. Oral Biol. Med. 12:425–437; 2001.PubMedCrossRefGoogle Scholar
  46. Smith, A. J.; Tobias, R. S.; Cassidy, N.; Plant, C. G.; Browne, R. M.; Begue-Kirn, C.; Ruch, J. V.; Lesot, H. Odontoblast stimulation in ferrets by dentine matrix components. Arch. Oral Biol. 39:13–22; 1994.PubMedCrossRefGoogle Scholar
  47. Smith, A. J.; Tobias, R. S.; Plant, C. G.; Browne, R. M.; Lesot, H.; Ruch, J. V. In vivo morphogenetic activity of dentine matrix proteins. J. Biol. Buccale 18:123–129; 1990.PubMedGoogle Scholar
  48. Sreenath, T.; Thyagarajan, T.; Hall, B., et al. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J. Biol. Chem. 278:24874–24880; 2003.PubMedCrossRefGoogle Scholar
  49. Suzuki, A.; Palmer, G.; Bonjour, J. P.; Caverzasio, J. Stimulation of sodium-dependent phosphate transport and signaling mechanisms induced by basic fibroblast growth factor in MC3T3-El osteoblast-like cells. J. Bone Miner. Res. 15:95–102; 2000.PubMedCrossRefGoogle Scholar
  50. Thyagarajan, T.; Sreenath, T.; Cho, A.; Wright, J. T.; Kulkarni, A. B. Reduced expression of dentin sialophosphoprotein is associated with dysplastic dentin in mice overexpressing transforming growth factor-beta 1 in teeth. J. Biol. Chem. 276:1106–11020; 2000Google Scholar
  51. Traub, W.; Jodaikin, A.; Arad, T.; Veis, A.; Sabsay, B. Dentin phosphophoryn binding to collagen fibrils. Matrix 12:197–201; 1992.PubMedGoogle Scholar
  52. Tziafas, D.; Alvanou, A.; Panagiotakopoulos, N.; Smith, A. J.; Lesot, H.; Komnenou, A.; Ruch, J. V. Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Arch. Oral Biol. 40:883–893; 1995.PubMedCrossRefGoogle Scholar
  53. Unda, F. J.; Martin, A.; Hilario, E.; Begue-Kirn, C.; Ruch, J. V.; Arechaga, J. Dissection of the odontoblast differentiation process in vitro by a combination of FGF1, FGF2, and TGFbetal. Dev. Dyn. 218:480–489; 2000.PubMedCrossRefGoogle Scholar
  54. Unterbrink, A.; O'Sullivan, M.; Chen, S.; MacDougall, M. TGF beta-1 downregulates DMP-1 and DSPP in odontoblasts. Connect. Tissue Res. 43:354–358; 2002.PubMedGoogle Scholar
  55. Vakeva, L.; Mackie, E.; Kantomaa, T.; Thesleff, I. Comparison of the distribution patterns of tenascin and alkaline phosphatase in developing teeth, cartilage, and bone of rats and mice. Anat. Rec. 228:69–76; 1990.PubMedCrossRefGoogle Scholar
  56. van den Bos, T.; Beertsen, W. Bound phosphoproteins enhance mineralization of alkaline phosphatase-collagen complexes in vivo. J. Bone Miner. Res. 9:1205–1209; 1994.PubMedCrossRefGoogle Scholar
  57. Viereck, V.; Siggelkow, H.; Tauber, S.; Raddatz, D.; Schutze N.; Hufner, M. Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. J. Cell Biochem. 86;348–356; 2002.PubMedCrossRefGoogle Scholar
  58. Woltgens, J. H.; Lyaruu, D. M.; Bronckers, A. L.; Bervoets, T. J.; Van Duin, M. Biomineralization during early stages of the developing tooth in vitro with special reference to secretory stage of amelogenesis. Int. J. Dev. Biol. 39:203–212; 1995.PubMedGoogle Scholar
  59. Xiao, G.; Jiang, D.; Thomas, P.; Benson, M. D.; Guan, K.; Karsenty, G.; Franceschi, R. T. MAPK pathways activate and phosphorylate the osteoblast-specific trancription factor, CbfaI. J. Biol. Chem. 275:4453–4459; 2000.PubMedCrossRefGoogle Scholar
  60. Xiao, G.; Wang, D.; Benson, M. D.; Karsenty, G.; Franceschi, R. T. Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J. Biol. Chem. 273:32988–32994; 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Jun Liu
    • 1
  • Taocong Jin
    • 1
  • Helena H. Ritchie
    • 1
  • Anthony J. Smith
    • 2
  • Brian H. Clarkson
    • 1
  1. 1.Department of Cariology, Restorative Sciences, and Endodontics, School of DentistryUniversity of MichiganAnn Arbor
  2. 2.Department of Oral Biology, School of DentistryUniversity of BirminghamBirminghamUK

Personalised recommendations