Modeling the airway epithelium in allergic asthma: Interleukin-13-induced effects in differentiated murine tracheal epithelial cells

  • Susan M. Lankford
  • Mariangela Macchione
  • Anne L. Crews
  • Shaun A. Mckane
  • Nancy J. Akley
  • Linda D. Martin
Articles Cell and Tissue Models


Mucous cells of the airway epithelium play a crucial role in the pathogenesis of human inflammatory airway diseases. Therefore, it is of importance to complement in vivo studies that use murine models of allergic asthma with in vitro mechanistic studies that use murine airway epithelial cells, including mucus-containing cells. In this study, we report the development and characterization of an in vitro culture system for primary murine tracheal epithelial (MTE) cells comprising ciliated cells and a substantial number of mucous cells. The increase in mucous cell number over that observed in the native murine airway, or in previously described murine cultures, creates a culture intermediate between the in vivo murine airway epithelium and in vitro cultures of human airway epithelial cells. To establish the usefulness of this culture system for the study of epithelial effects during inflammatory airway diseases, the cells were exposed to interleukin (IL)-13, a central inflammatory mediator in allergic asthma. The IL-13 induced two characteristic epithelial effects, proliferation and modulation of MUC5AC gene expression. There was a concentration dependence of these events, wherein high concentrations of IL-13 (10 ng/ml) induced proliferation, whereas lower concentrations (1 ng/ml) increased MUC5AC mRNA (where mRNA is messenger RNA). Interestingly, these effects occurred in an inverse manner, with the high concentration of IL-13 also provoking a significant decrease in MUC5AC gene expression. Thus, MTE cells cultured in this manner may provide an important link between experimental findings from animal models of allergic asthma and their application to human disease.

Key words

primary cell culture mucous cell mucus proliferation MUC5AC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, W. M. Animal models of asthma. In: Busse, W. W.; Holgate, S. T., ed. Asthma and rhinitis. 2nd ed. Oxford: Blackwell Science; 2000: 1205–1227.Google Scholar
  2. Adler, K. B.; Cheng, P.-W.; Kim, K. C. Characterization of guinea pig tracheal epithelial cells maintained in hiphasic organotypic culture: cellular composition and biochemical analysis of released glycoconjugates. Am. J. Respir. Cell Mol. Biol. 2:145–154; 1990.PubMedGoogle Scholar
  3. Alimam, M.; Piazza, F. M.; Selby, D. M.; Letwin, N.; Huang, L.; Rose, M. C. Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am. J. Respir. Cell Mol. Biol. 22:253–260; 2000.Google Scholar
  4. Arm, J. P.; Lee, T. H. The pathobiology of bronchial asthma. Adv. Immunol. 51:323–382; 1992.PubMedGoogle Scholar
  5. Atherton, H. C.; Jones, G.; Danahay, H. Il-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am. J. Physiol. Lung Cell Mol. Physiol. 285:L730-L739; 2003.PubMedGoogle Scholar
  6. Batra, V.; Musani, A. I.; Hastie, A. T.; Khurana, S.; Carpenter, K. A.; Zangrilli, J. G.; Peters, S. P. Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-β1, TGF-β2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects of α-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts. Clin. Exp. Allergy 34:437–444; 2004.PubMedCrossRefGoogle Scholar
  7. Booth, B. W.; Adler, K. B.; Bonner, J. C.; Tournier, F.; Martin, L. D. Interleukin-13 induces proliferation of human airway epithelial cells in vitro via a mechanism mediated by transforming growth factor-alpha. Am. J. Respir. Cell Mol. Biol. 25:739–743; 2001.PubMedGoogle Scholar
  8. Bousquet, J.; Jeffery, P. K.; Busse, W. W.; Johnson, M.; Vignola, A. M. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 161:1720–1745; 2000.PubMedGoogle Scholar
  9. Chen, Y.; Thai, P.; Zhao, Y.-H.; Ho, Y.-S.; DeSouza, M. M.; Wu, R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J. Biol. Chem. 19:17036–17043; 2003.CrossRefGoogle Scholar
  10. Clarke, L. L.; Burns, K. A.; Bayle, J. Y.; Boucher, R. C.; Van Scott, M. R. Sodium- and chloride-conductive pathways in cultured mouse tracheal epithelium. Am. J. Physiol. 263:L519-L525; 1992.PubMedGoogle Scholar
  11. Davidson, D. J.; Kilanowski, F. M.; Randell, S. H.; Sheppard, D. N.; Dorin, J. R. A primary culture model of differentiated murine tracheal epithelium. Am. J. Physiol. Lung Cell Mol. Physiol. 279:L766-L778; 2000.PubMedGoogle Scholar
  12. Evans, C. M.; Williams, O. W.; Tuvim, M. J., et al. Mucin is produced by Clara cells in the proximal airways of antigen-challenged mice. Am. J. Respir. Cell Mol. Biol. 31:382–394; 2004.PubMedCrossRefGoogle Scholar
  13. Gray, T.; Guzman, K.; Davis, C.; Abdullah, L.; Nettesheim, P. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 14:104–112; 1996.PubMedGoogle Scholar
  14. Grunig, G.; Warnock, M.; Wakil, A. E., et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282:2261–2263; 1998.PubMedCrossRefGoogle Scholar
  15. Hessel, E. M.; Van Oosterhout, A. J.; Hofstra, C. L., et al. Bronchoconstriction and airway-hyperresponsiveness after ovalbumin inhalation in sensitized mice. Eur. J. Pharmacol. 293:401–412; 1995.PubMedCrossRefGoogle Scholar
  16. Huang, S.-K.; Xiao, H.-Q.; Kleine-Tebbe, J.; Paciotti, G.; Marsh, D. G.; Lichtenstein, L. M.; Liu, M. C. IL-13 expression at the sites of allergen challenge in patients with asthma. J. Immunol. 155:2688–2694; 1995.PubMedGoogle Scholar
  17. Isaacs, W. B.; Cook, R. K.; Van Atta, J. C.; Redmond, C. M.; Fulton, A. B. Assembly of vimentin in cultured cells varies with cell type. J. Biol. Chem. 264:17953–17960; 1989.PubMedGoogle Scholar
  18. Kaartinen, L.; Nettesheim, P.; Adler, K.; Randell, S. Rat tracheal epithelial cell differentiation in vitro. In Vitro Cell. Dev. Biol. 29A:481–492; 1993.Google Scholar
  19. Kondo, M.; Finkbeiner, W. E.; Widdicombe, J. H. Simple technique for culture of highly differentiated cells from dog tracheal epithelium. Am. J. Physiol. 261:L106-L117; 1991.PubMedGoogle Scholar
  20. Kroegel, C.; Julius, P.; Matthys, H.; Virchow, J.-C., Jr.; Luttmann, W. Endobronchial secretion of interleukin-13 following local allergen challengen in atopic asthma: relationship to interleukin-4 and eosinophil counts. Eur. Respir. J. 9:899–904; 1996.PubMedCrossRefGoogle Scholar
  21. Krunkosky, T. M.; Fischer, B. M.; Martin, L. D.; Jones, N.; Akley, N. J.; Adler, K. B. Effects of TNF-alpha on expression of ICAM-1 in human airway epithelial cells in vitro. Signaling pathways controlling surface and gene expression. Am. J. Respir. Cell Mol. Biol. 22:685–692; 2000.PubMedGoogle Scholar
  22. Kumar, R. K.; Maronese, S. E.; O'Grady, R. Serum-free culture of mouse tracheal epithelial cells. Exp. Lung Res. 23:427–440; 1997.PubMedGoogle Scholar
  23. Kuperman, D. A.; Huang, X.; Koth, L. L., et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus over-production in asthma. Nat. Med. 8:885–889; 2002.PubMedGoogle Scholar
  24. Lee, T.; Wu, R.; Brody, A.; Barrett, J.; Nettesheim, P. Growth and differentiation of hamster tracheal epithelial cells in culture. Exp. Lung Res. 6:27–45; 1984.PubMedGoogle Scholar
  25. Liedtke, C. M. Differentiated properties of rabbit tracheal epithelial cells in primary culture. Am. J. Physiol. 255:C760-C770; 1988.PubMedGoogle Scholar
  26. McDowell, E. M.; Trump, B. F. Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 100:405–414; 1976.PubMedGoogle Scholar
  27. Moll, R.; Franke, W. W.; Schiller, D. L. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24; 1982.PubMedCrossRefGoogle Scholar
  28. National Institutes of Health. Data fact sheet: asthma statistics. US Department of Health and Human Services: Bethesda, MD; 1999.Google Scholar
  29. Pack R. J.; Al-Ugaily, L. H.; Morris, G.; Widdicombe, J. G. The distribution and structure of cells in the tracheal epithelium of the mouse. Cell Tiss. Res. 208:65–84; 1980.CrossRefGoogle Scholar
  30. Pare, P.; Michoud, M.; Boucher, R.; Hogg, J. Pulmonary effects of acute and chronic antigen exposure of immunized guinea pigs. J. Appl. Physiol. 46:346–353; 1979.PubMedGoogle Scholar
  31. Reis-Filho, J. S.; Simpson, P. T.; Martins, A.; Preto, A.; Gartner, F.; Schmitt, F. C. Distribution of p63, cytokeratins 5/6 and cytokeratin 14 in 51 normal and 400 neoplastic human tissue samples using TARP-4 multi-tumor tissue microarray. Virchows Arch. 443:122–132; 2003.PubMedCrossRefGoogle Scholar
  32. Robinson, C.; Wu, R. Culture of conducting airway epithelial cells in serum-free medium. J. Tiss. Cult. Methods 13:95–102; 1991.CrossRefGoogle Scholar
  33. Sarpong, S. B.; Zhang, L. Y.; Kleeberger, S. R. A novel mouse model of experimental asthma. Int. Arch. Allergy Immunol. 132:346–354; 2003.PubMedCrossRefGoogle Scholar
  34. Schumann, B. L.; Cody, T. E.; Miller, M. L.; Leikauf, G. D. Isolation, characterization, and long-term culture of fetal bovine tracheal epithelial cells. In Vitro Cell. Dev. Biol. 24A:211–216; 1988.CrossRefGoogle Scholar
  35. Sime, A.; McKellar, Q.; Nolan, A. Method for the growth of equine airway epithelial cells in culture. Res. Vet. Sci. 62:30–33; 1997.PubMedCrossRefGoogle Scholar
  36. Sweat, J. M.; Johnson, C. M.; Gibbs, E. P. In vitro development and characterization of a manatee bronchial cell line. In Vitro Cell. Dev. Biol. 39A:249–256; 2003.CrossRefGoogle Scholar
  37. Wills-Karp, M.; Luyimbazi, J.; Xu, X.; Schofield, B.; Nehen, T. Y.; Karp, C. L.; Donaldson, D. D. Interleukin-13: central mediator of allergic asthma. Science 282:2258–2261; 1998.PubMedCrossRefGoogle Scholar
  38. You, Y.; Richer, E. J.; Huang, T.; Brody, S. L. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am. J. Physiol. Lung Cell Mol. Physiol. 283:L1315-L1321; 2002.PubMedGoogle Scholar
  39. Zhu, Z.; Homer, R. J.; Wang, Z.; Chen, Q.; Geba, G. P.; Wang, J.; Zhang, Y.; Elias, J. A. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 103:779–788; 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Susan M. Lankford
    • 1
  • Mariangela Macchione
    • 1
  • Anne L. Crews
    • 1
  • Shaun A. Mckane
    • 1
  • Nancy J. Akley
    • 1
  • Linda D. Martin
    • 1
  1. 1.College of Veterinary MedicineNorth Carolina State UniversityRaleigh

Personalised recommendations