Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells

  • Miho Furue
  • Tetsuji Okamoto
  • Yohei Hayashi
  • Hitoshi Okochi
  • Manabu Fujimoto
  • Yasufumi Myoishi
  • Takanori Abe
  • Kiyoshi Ohnuma
  • Gordon H. Sato
  • Makoto Asashima
  • J. Denry Sato
Articles Cell Growth/Differentiation/Apoptosis

Summary

We have developed a serum-free medium, designated ESF7, in which leukemia inhibitory factor (LIF) clearly stimulated murine embryonic stem (ES) cell proliferation accompanied by increased expression of nanog and Rex-1 and decreased FGF-5 expression. These effects were dependent on the concentration of LIF. The ES cells maintained in ESF7 medium for more than 2 yr retained an undifferentiated phenotype, as manifested by the expression of the transcription factor Oct-3/4, the stem cell marker SSEA-1, and alkaline phosphatase. Withdrawal of LIF from ESF7 medium resulted in ES cell apoptosis. Addition of serum to ESF7 medium promoted ES cell differentiation. Addition of MBP4 promoted ES cell differentiation into simple epithelial-like cells. In contrast, FGF-2 promoted ES cell differentiation into neuronal and glial-like cells. Under serum-free culture conditions, LIF was sufficient to stimulate cell proliferation, it inhibited cell differentiation, and it maintained self-renewal of ES cells. Because this simple serum-free adherent monoculture system supports the long-term propagation of pluripotent ES cells in vitro, it will allow the elucidation of ES cell responses to growth factors under defined conditions.

Key words

ES mouse embryonic stem cells serum-free LIF nanog Oct-3/4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asashima, M.; Ariizumi, T.; Malacinski, G. M. In vitro control of organogenesis and body patterning by activin during early amphibian development. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126:169–178; 2000.PubMedCrossRefGoogle Scholar
  2. Bagutti, C.; Wobus, A. M.; Fassler, R.; Watt, F. M. Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells. Dev. Biol. 179:184–196; 1996.PubMedCrossRefGoogle Scholar
  3. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22:649–655; 1980.PubMedCrossRefGoogle Scholar
  4. Bottenstein, J. E.; Sato, G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517; 1979.PubMedCrossRefGoogle Scholar
  5. Brewer, G. J.; Torricelli, J. R.; Evege, E. K.; Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35:567–576; 1993.PubMedCrossRefGoogle Scholar
  6. Carette, M. J.; Lane, E. B.; Ferguson, M. W. Differentiation of mouse embryonic palatal epithelium in culture: selective cytokeratin expression distinguishes between oral, medial edge and nasal epithelial cells. Differentiation 47:149–161; 1991.PubMedCrossRefGoogle Scholar
  7. Cavaleri, F.; Scholer, H. R. Nanog: a new recruit to the embryonic stem cell orchestra. Cell 113:551–552; 2003.PubMedCrossRefGoogle Scholar
  8. Chambers, I.; Colby, D.; Robertson, M.; Nichols, J.; Lee, S.; Tweedie, S.; Smith, A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655; 2003.PubMedCrossRefGoogle Scholar
  9. Doestchman, T. C.; Eistetter, H.; Katz, M.; Schmidt, W.; Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87:27–45; 1985.Google Scholar
  10. Evans, M. J.; Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156; 1981.PubMedCrossRefGoogle Scholar
  11. Furue, M.; Asashima, M. Isolation of pluripotential stem cells from Xenopus embryos. In: Lanza, R., ed. Handbook of stem cells, vol. 1. San Diego, CA: Academic Press; 2004:483–492.Google Scholar
  12. Furue, M.; Okamoto, T.; Ikeda, M.; Tanaka, Y.; Sasaki, Y.; Nishimura, K.; Sato, J. D. Primitive neuroectodermal tumor cell lines derived from a metastatic pediatric tumor. In Vitro Cell. Dev. Biol. 30A:813–816; 1994.Google Scholar
  13. Furue, M.; Zhang, Y.; Okamoto, T.; Hata, R. L.; Asashima, M. Activin A induces expression of rat Sel-II mRNA, a negative regulator of notch signaling, in rat salivary gland-derived epithelial cells. Biochem. Biophys. Res. Commun. 282:745–749; 2001.PubMedCrossRefGoogle Scholar
  14. Gardner, R. L.; Brook, F. A. Reflections on the biology of embryonic stem (ES) cells. Int. J. Dev. Biol. 41:235–243; 1997.PubMedGoogle Scholar
  15. Hayashi, I.; Sato, G. H. Replacement of serum by hormones permits growth of cells in a defined medium. Nature 259:132–134; 1976.PubMedCrossRefGoogle Scholar
  16. Hots, M.; Gong, J.; Traganos, F.; Drazynkiewics, Z. Flow cytometric detection of apoptosis: comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry 15:237–244; 1994.CrossRefGoogle Scholar
  17. Kawasaki, H.; Mizuseki, K.; Nishikawa, S.; Kaneko, S.; Kuwana, Y.; Nakanishi, S.; Nishikawa, S. I.; Sasai, Y. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40; 2000.PubMedCrossRefGoogle Scholar
  18. Keller, G.; Kennedy, M.; Papayannopoulou, T.; Wiles, M. V. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell Biol. 13:473–486; 1993.PubMedGoogle Scholar
  19. Lake, J.; Rathjen, J.; Remiszewski, J.; Rathien, P. D. Reversible programming of pluripotent cell differentiation. J. Cell Sci. 113 (Pt. 3):555–566; 2000.PubMedGoogle Scholar
  20. Loo, D. T.; Fuquay, J. I.; Rawson, C. L.; Barnes, D. W. Extended culture of mouse embryo cells without senescence: inhibition by serum. Science 236:200–202; 1987.PubMedCrossRefGoogle Scholar
  21. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78:7634–7638; 1981.PubMedCrossRefGoogle Scholar
  22. McKay, R. Stem cells in the central nervous system. Science 276:66–71; 1997.PubMedCrossRefGoogle Scholar
  23. Mitsui, K.; Tokuzawa, Y.; Itoh, H., et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642; 2003.PubMedCrossRefGoogle Scholar
  24. Niwa, H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct. Funct. 26:137–148; 2001.PubMedCrossRefGoogle Scholar
  25. Niwa, H.; Miyazaki, J.; Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24:372–376; 2000.PubMedCrossRefGoogle Scholar
  26. Owens, D. W.; Lane, E. B. The quest for the function of simple epithelial keratins. Bioessays 25:748–758; 2003.PubMedCrossRefGoogle Scholar
  27. Pelton, T. A.; Bettess, M. D.; Lake, J.; Rathjen, J.; Rathjen, P. D. Developmental complexity of early mammalian pluripotent cell populations in vivo and in vitro. Reprod. Fertil. Dev. 10:535–549; 1998.PubMedCrossRefGoogle Scholar
  28. Purkis, P. E.; Steel, J. B.; Mackenzie, I. C.; Nathrath, W. B.; Leigh, I. M.; Lane, E. B. Antibody markers of basal cells in complex epithelia. J. Cell Sci. 97 (Pt. 1):39–50; 1990.PubMedGoogle Scholar
  29. Sato, J. D.; Barnes, D.; Hayashi, I., et al. Specific cells and their requirements. In: Davis, J. M., ed. Basic cell culture: a practical approach. 2nd ed. Oxford, England: Oxford University Press; 2002:227–274.Google Scholar
  30. Sato, J. D.; Kawamoto, T.; Okamoto, T. Cholesterol requirement of P3-X63-Ag8 and X63-Ag8.653 mouse myeloma cells for growth in vitro. J. Exp. Med. 165:1761–1766; 1987.PubMedCrossRefGoogle Scholar
  31. Smith, A. Embryonic stem cells. In: Marshak D. R.; Gardner, R. L.; Gottlieb, D., ed. Stem cell biology. New York: Cold Spring Harbor Laboratory Press; 2001:205–230.Google Scholar
  32. Smith, A. G.; Heath, J. K.; Donaldson, D. D.; Wong, G. G.; Moreau, J.; Stahl, M.; Rogers, D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690; 1988.PubMedCrossRefGoogle Scholar
  33. Tanaka, T. S.; Kunath, T.; Kimber, W. L., et al. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res. 12:1921–1928; 2002.PubMedCrossRefGoogle Scholar
  34. Tiedemann, H.; Asashima, M.; Grunz, H.; Knochel, W. Pluripotent cells (stem cells) and their determination and differentiation in earlyvertebrate embryogenesis. Dev. Growth Differ. 43:469–502; 2001.PubMedCrossRefGoogle Scholar
  35. Todaro, G. J.; Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17:299–313; 1963.PubMedCrossRefGoogle Scholar
  36. Toumadje, A.; Kusumoto, K. I.; Parton, A., et al. Pluripotent differentiation in vitro of murine ES-D3 embryonic stem cells. In Vitro Cell. Dev. Biol. 39A:449–453; 2003.CrossRefGoogle Scholar
  37. Tremblay, K. D.; Hoodless, P. A.; Bikoff, E. K.; Robertson, E. J. Formation of the definitive endodern in mouse is a Smad2-dependent process. Development 127:3079–3090; 2000.PubMedGoogle Scholar
  38. Tropepe, V.; Hitoshi, S.; Sirard, C.; Mak, T. W.; Rossant, J.; van der Kooy, D. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30:65–78; 2001.PubMedCrossRefGoogle Scholar
  39. Wiles, M. V. Embryonic stem cell differentiation in vitro. Methods Enzymol. 225:900–918; 1993.PubMedCrossRefGoogle Scholar
  40. Wiles, M. V.; Johansson, B. M. Embryonic stem cell development in a chemically defined medium. Exp. Cell Res. 247:241–248; 1999.PubMedCrossRefGoogle Scholar
  41. Wiles, M. V.; Keller, G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111:259–267; 1991.PubMedGoogle Scholar
  42. Williams, R. L.; Hilton, D. J.; Pease, S., et al. Myeloid leukaemia inhibitory factor maintains the developmental potential potential of embryonic stem cells. Nature 336:684–687; 1988.PubMedCrossRefGoogle Scholar
  43. Ying, Q. L.; Nichols, J.; Chambers, I.; Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292; 2003a.PubMedCrossRefGoogle Scholar
  44. Ying, Q. L.; Sravridis, M.; Griffiths, D.; Li, M.; Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21:183–186; 2003b.PubMedCrossRefGoogle Scholar
  45. Zhang, X.; Klueber, K. M.; Guo, Z.; Lu, C.; Roisen, F. J. Adult human olfactory neural progenitors cultured in defined medium. Exp. Neurol. 186:112–123; 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Miho Furue
    • 8
  • Tetsuji Okamoto
    • 1
  • Yohei Hayashi
    • 2
  • Hitoshi Okochi
    • 3
  • Manabu Fujimoto
    • 3
  • Yasufumi Myoishi
    • 1
  • Takanori Abe
    • 4
  • Kiyoshi Ohnuma
    • 2
  • Gordon H. Sato
    • 5
  • Makoto Asashima
    • 2
    • 4
    • 6
  • J. Denry Sato
    • 7
  1. 1.Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Science, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of Life Sciences (Biology), Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  3. 3.Department of Tissue Regeneration, Research InstituteInternational Medical Center of JapanTokyoJapan
  4. 4.Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
  5. 5.Ministry of FisheriesMessawaEritrea (G.H.S.)
  6. 6.International Cooperative Research Project (ICORP)-Japan Science and Technology Agency (JST)The University of TokyoTokyoJapan
  7. 7.Marine Cell Line and Stem Cell ProgramMount Desert Island Biological LaboratoryMaine
  8. 8.Department of Biochemistry and Molecular BiologyKanagawa Dental CollegeYokusukaJapan

Personalised recommendations