Modulation of activin a—Induced differentiation in vitro by vascular endothelial growth factor in Xenopus presumptive ectodermal cells

  • Shiro Yoshida
  • Miho Furue
  • Kentaro Nagamine
  • Takanori Abe
  • Yasuto Fukui
  • Yasufumi Myoishi
  • Tomoyuki Fujii
  • Tetsuji Okamoto
  • Yuji Taketani
  • Makoto Asashima
Articles Cell Growth/Differentiation/Apoptosis

Summary

We have previously demonstrated that activin A at low concentrations induced ventral mesoderm including blood-like cells from Xenopus animal caps and that beating heart could be also induced from animal caps treated with 100 ng/ml activin A, suggesting that activin A might be involved in cardiac vasculogenesis. A vascular endothelial growth factor (VEGF) is a powerful mitogen for endothelial cells and is an inducer and regulator of angiogenesis. However, VEGF function in Xenopus development is not clearly identified. In this study, we determined the effect of VEGF on activin A—induced differentiation of animal cap. The VEGF induced duct-like structure composed of Flk-1-positive cells together with the induction of nonvascular tissues, such as neural tissues. This histological result was coincident with our reverse transcriptase-polymerase chain reaction analysis that VEGF together with activin A promoted the expression of Xenopus N-CAM and Xenopus brachyury. This study suggests that VEGF has additional biological activities besides angiogenesis, and arises a different function that VEGF induces stroma cell migration or recruitment that are required for blood vessel formation. This differentiation system will aid in the understanding of angiogenesis during early development.

Key words

activin VEGF blood vessel endothelial cell animal cap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariizumi, T.; Asashima, M. In vitro induction systems for analyses of amphibian organogenesis and body patterning. Int. J. Dev. Biol. 45:273–279; 2001.PubMedGoogle Scholar
  2. Asashima, M.; Ariizumi, T.; Malacinski, G. M. In vitro control of organogenesis and body patterning by activin during early amphibian development. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 126:169–178; 2000.PubMedCrossRefGoogle Scholar
  3. Asashima, M.; Kinoshita, K.; Ariizumi, T.; Malacinski, G. M. Role of activin and other peptide growth factors in body patterning in the early amphibian embryo. Int. Rev. Cytol. 191:1–52; 1999.PubMedGoogle Scholar
  4. Bassez, T.; Paris, J.; Omilli, F.; Dorel, C.; Osborne, H. B. Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes. Development 110:955–962; 1990.PubMedGoogle Scholar
  5. Carmeliet, P.; Ferreira, V.; Breier, G., et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439; 1996.PubMedCrossRefGoogle Scholar
  6. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162:156–159; 1987.PubMedCrossRefGoogle Scholar
  7. Cleaver, O.; Krieg, P. A. VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 125:3905–3914; 1998.PubMedGoogle Scholar
  8. Cleaver, O.; Tonissen, K. F.; Saha, M. S.; Krieg, P. A. Neovascularization of the Xenopus embryo. Dev. Dyn. 210:66–77; 1997.PubMedCrossRefGoogle Scholar
  9. Devic, E.; Paquereau, L.; Vernier, P.; Knibiehler, B.; Audigier, Y. Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech. Dev. 59:129–140; 1996.PubMedCrossRefGoogle Scholar
  10. Dieffenbach, C. W.; Dveksler, G. S. A Laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1995.Google Scholar
  11. Dumont, D. J.; Fong, G. H.; Puri, M. C.; Gradwohl, G.; Alitalo, K.; Breitman, M. L. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn. 203:80–92; 1995.PubMedGoogle Scholar
  12. Dumont, D. J.; Yamaguchi, T. P.; Conlon, R. A.; Rossant, J.; Breitman, M. L. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7:1471–1480; 1992.PubMedGoogle Scholar
  13. Ferrara, N.; Carver-Moore, K.; Chen, H., et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442; 1996.PubMedCrossRefGoogle Scholar
  14. Ferrara, N.; Chen, H.; Davis-Smyth, T., et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4:336–340; 1998.PubMedCrossRefGoogle Scholar
  15. Flamme, I.; von Reutern, M.; Drexler, H. C.; Syed-Ali, S.; Risau, W. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev. Biol. 171:399–414; 1995.PubMedCrossRefGoogle Scholar
  16. Fouquet, B.; Weinstein, B. M.; Serluca, F. C.; Oishman, M. C. Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev. Biol. 183:37–48; 1997.PubMedCrossRefGoogle Scholar
  17. Fukui, Y.; Furue, M.; Myoishi, Y.; Sato, J. D.; Okamoto, T.; Asashima, M. Nutrition supplemented medium for a long-term culture of Xenopus presumptive ectoderm. Dev. Growth Differ. 45:499–506; 2003.PubMedCrossRefGoogle Scholar
  18. Furue, M.; Asashima, M. Isolation of pluripotential stem cells from Xenopus embryos. In: Lanza, R., et al. ed. Handbook of stem cells: embryonic stem cells, and adult and fetal stem cells. New York: Academic Press; Vol. 1, 483–492, 2004.Google Scholar
  19. Furue, M.; Myoishi, Y.; Fukui, Y.; Ariizumi, T.; Okamoto, T.; Asashima, M. Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro. Proc. Natl. Acad. Sci. USA 99:15474–15479; 2002.PubMedCrossRefGoogle Scholar
  20. Harland, R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36:685–695; 1991.PubMedCrossRefGoogle Scholar
  21. Iraha, F.; Saito, Y.; Yoshida, K.; Kawakami, M.; Izutsu, Y.; Daar, I. O.; Maeno M. Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos. Dev. Growth Differ. 44:395–407; 2002.PubMedCrossRefGoogle Scholar
  22. Iwama, A.; Hamaguchi, I.; Hashiyama, M.; Murayama, Y.; Yasunaga, K.; Suda, T. Molecular cloning and characterization of mouse TIE and TEK receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem. Biophys. Res. Commun., 195:301–309; 1993.PubMedCrossRefGoogle Scholar
  23. Mills, K. R.; Kruep, D.; Saha, M. S. Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in Xenopus laevis. Dev. Biol. 209:352–368; 1999.PubMedCrossRefGoogle Scholar
  24. Miyanaga, Y.; Shiurba, R.; Asashima, M. Blood cell induction in Xenopus animal cap explants: effects of fibroblast growth factor, bone morphogenetic proteins, and activin. Dev. Genes Evol. 209:69–76; 1999.PubMedCrossRefGoogle Scholar
  25. Miyanaga, Y.; Shiurba, R.; Nagata, S.; Pfeiffer, C. J.; Asashima, M. Induction of blood cells in Xenopus embryo explants. Dev. Genes Evol. 207:417–426; 1998.PubMedCrossRefGoogle Scholar
  26. Ninomiya, H.; Takahashi, S.; Tanegashima, K.; Yokota, C.; Asashima, M. Endoderm differentiation and inductive effect of activin-treated ectoderm in Xenopus. Dev. Growth Differ. 41:391–400; 1999.PubMedCrossRefGoogle Scholar
  27. Noden, D. M. Embryonic origins and assembly of blood vessels. Am. Rev. Respir. Dis. 140:1097–1103; 1989.PubMedGoogle Scholar
  28. Okabayashi, K.; Asashima, M. Tissue generation from amphibian animal caps. Curr. Opin. genet. Dev. 13:502–507; 2003.PubMedCrossRefGoogle Scholar
  29. Risau, W.; Flamme, I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11:73–91; 1995.PubMedCrossRefGoogle Scholar
  30. Sasai, Y.; Lu, B.; Piccolo, S.; De Robertis, E. M. Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15:4547–4555; 1996.PubMedGoogle Scholar
  31. Sumoy, L.; Keasey, J. B.; Dittman, T. D.; Kimelman, D. A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos. Mech. Dev. 63:15–27; 1997.PubMedCrossRefGoogle Scholar
  32. Tamai, K.; Yokota, C.; Ariizumi, T.; Asashima, M. Cytochalasin B inhibitis morphogenetic movement and muscle differentiation of activin-treated ectoderm in Xenopus. Dev. Growth Differ. 41:41–49; 1999.PubMedCrossRefGoogle Scholar
  33. Tjwa, M.; Luttun, A.; Autiero, M.; Carmeliet, P. VEGF and PIGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res. 314:5–14; 2003.PubMedCrossRefGoogle Scholar
  34. Waltenberger, J.; Mayr, U.; Frank, H.; Hombach, V. Suramin is a potent inhibitor of vascular endothelial growth factor. A contribution to the molecular basis of its antiangiogenic action. J. Mol. Cell Cardiol. 28:1523–1529; 1996.PubMedCrossRefGoogle Scholar
  35. Yamaguchi, T. P.; Dumont, D. J.; Conlon, R. A.; Breitman, M. L.; Rossant, J. flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498; 1993.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Shiro Yoshida
    • 1
  • Miho Furue
    • 2
  • Kentaro Nagamine
    • 3
  • Takanori Abe
    • 4
  • Yasuto Fukui
    • 5
  • Yasufumi Myoishi
    • 5
  • Tomoyuki Fujii
    • 1
  • Tetsuji Okamoto
    • 5
  • Yuji Taketani
    • 1
  • Makoto Asashima
    • 6
    • 7
  1. 1.Department of Obstetrics and Gynecology, Faculty of MedicineThe University of TokyoTokyoJapan
  2. 2.Department of Biochemistry and Molecular BiologyKanagawa Dental CollegeYokosukaJapan
  3. 3.Eiken Chemical Co. Ltd.TochigiJapan
  4. 4.Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
  5. 5.Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Science, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  6. 6.International Cooperative Research Project (ICORP)-Japan Science and Technology AgencyThe University of TokyoTokyoJapan
  7. 7.Department of Life Sciences (Biology), Graduate School of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations