Mechanism of cytotoxicity of paraquat

  • Tetsuhito Fukushima
  • Keiko Tanaka
  • Heejin Lim
  • Masaki Moriyama
Review Article


Acute paraquat poisoning seems to be very complex because many possible mechanisms of paraquat cytotoxicity have been reported. Some may not be the cause of paraquat poisoning but the result or an accompanying phenomenon of paraquat action. The mechanism critical for cell damage is still unknown. Paraquat poisoning is probably a combination of several paraquat actions. Arguing which mechanism is more critical may not be important, and these clarified mechanisms should be connected and utilized in the development of treatment for paraquat poisoning. Many people still die of pulmonary fibrosis after paraquat exposure. The next target of study will be to verify the mechanism of pulmonary fibrosis by paraquat on the basis of the outcome of studies such as this review.

Key words

paraquat cytotoxicity free radicals oxidative stress lipid peroxidation 


  1. (1).
    Bus JS, Aust SD and Gibson JE. Superoxide-and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem. Biophys. Res. Commun. 1974; 58: 749–755.PubMedCrossRefGoogle Scholar
  2. (2).
    Kato R, Iwasaki K and Noguchi H. Stimulatory effect of FMN and methyl viologen on cytochrome P-450 dependent reduction of tertiary amine N-oxide. Biochem. Biophys. Res. Commun. 1976; 72: 267–274.PubMedCrossRefGoogle Scholar
  3. (3).
    Clejan L and Cederbaum AI. Synergistic interactions between NADPH-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals. Biochem. Pharmacol. 1989; 38: 1779–1786.PubMedCrossRefGoogle Scholar
  4. (4).
    Talcott RE, Shu H and Wei ET. Dissociation of microsomal oxygen reduction and lipid peroxidation with the electron acceptors, paraquat and menadione. Biochem. Pharmacol. 1979; 28: 665–671.PubMedCrossRefGoogle Scholar
  5. (5).
    Castro GD, Lopez A and Castro JA. Evidence for hydroxyl free radical formation during paraquat but not for nifurtimox liver microsomal biotransformation. A dimethyl-sulfoxide scavenging study. Arch. Toxicol. 1988; 62: 355–358.PubMedCrossRefGoogle Scholar
  6. (6).
    Hirai K, Witschi H and Cote MG. Mitochondrial injury of pulmonary alveolar epithelial cells in acute paraquat intoxication. Exp. Mol. Pathol. 1985; 43: 253–259.CrossRefGoogle Scholar
  7. (7).
    Hirai K, Ikeda K and Wang G. Paraquat damage of rat liver mitochondria by superoxide production depends on extramitochondrial NADH. Toxicology 1992; 72: 1–16.PubMedCrossRefGoogle Scholar
  8. (8).
    Shimada H, Hirai K, Simamura E and Pan J. Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat livers. Arch. Biochem. Biophys. 1998; 351: 75–81.PubMedCrossRefGoogle Scholar
  9. (9).
    Thakar JH and Hassan MN. Effects of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver. Life Sci. 1988; 43: 143–149.PubMedCrossRefGoogle Scholar
  10. (10).
    Molck AM and Friis C. The cytotoxic effect of paraquat to isolated renal proximal tubular segments from rabbits. Toxicology 1997; 122: 123–132.PubMedCrossRefGoogle Scholar
  11. (11).
    Blaszczynski M, Litwinska J, Zaborowska D and Bilinski T. The role of respiratory chain in paraquat toxicity in yeast. Acta. Microbiol. Pol. 1985; 34: 243–254.PubMedGoogle Scholar
  12. (12).
    Sata T, Takeshige K, Takayanagi R and Minakami S. Lipid peroxidation by bovine heart submitochondrial particles stimulated by 1,1′-dimethyl-4,4′-bipyridylium dichloride (paraquat). Biochem. Pharmacol. 1983; 32: 13–19.PubMedCrossRefGoogle Scholar
  13. (13).
    Hasegawa E, Kang D, Sakamoto K, Mitsumoto A, Nagano T, Minakami S and Takeshige K. A dual effect of 1-methyl-4-phenylpyridinium (MPP+)-analogs on the respiratory chain of bovine heart mitochondria. Arch. Biochem. Biophys. 1997; 337: 69–74.CrossRefGoogle Scholar
  14. (14).
    Fukushima T, Yamada K, Isobe A, Shiwaku K and Yamane Y. Mechanism of cytotoxicity of paraquat: I. NADH oxidation and paraquat radical formation via complex 1. Exp. Toxic. Pathol. 1993; 45: 345–349.Google Scholar
  15. (15).
    Fukushima T, Tawara T, Isobe A, Hojo N, Shiwaku K and Yamane Y. Radical formation site of cerebral complex 1 and Parkinson’s disease. J. Neurosci. Res. 1995; 42: 385–390.PubMedCrossRefGoogle Scholar
  16. (16).
    Fukushima T, Yamada K, Hojo N, Isobe A, Shiwaku K and Yamane Y. Mechanism of cytotoxicity of paraquat: III. The effect of acute paraquat exposure on the electron transport system in rat mitochondria. Exp. Toxic. Pathol. 1994; 46: 437–441.Google Scholar
  17. (17).
    Tawara T, Fukushima T, Hojo N, Isobe A, Shiwaku K, Setogawa T and Yamane Y. Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch. Toxicol. 1996; 70: 585–589.PubMedCrossRefGoogle Scholar
  18. (18).
    Tomita M. Comparison of one-electron reduction activity against the bipyridylium herbicides, paraquat and diquat, in microsomal and mitochondrial fractions of liver, lung and kidney (in vitro). Biochem. Pharmacol. 1991; 42: 303–309.PubMedCrossRefGoogle Scholar
  19. (19).
    Yamada K and Fukushima T. Mechanism of cytotoxicity of paraquat: II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria. Exp. Toxic. Pathol. 1993; 45: 375–380.Google Scholar
  20. (20).
    Evans MV, Turton HE, Grant CM and Dawes IW. Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. J. Bacteriol. 1998; 180: 483–490.PubMedGoogle Scholar
  21. (21).
    Fabisiak JP, Kagan VE, Tyurina YY, Tyurin VA and Lazo JS. Paraquat-induced phosphatidylserine oxidation and apoptosis are independent of activation of PLA2. Am. J. Physiol. 1998; 274: L793–802.PubMedGoogle Scholar
  22. (22).
    Davies KJ, Delsignore ME and Lin SW. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J. Biol. Chem. 1987; 262: 9902–9907.PubMedGoogle Scholar
  23. (23).
    Davies KJ and Delsignore ME. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J. Biol. Chem. 1987; 262: 9908–9913.PubMedGoogle Scholar
  24. (24).
    Narabayashi H, Takeshige K and Minakami S. Alteration of innermembrane components and damage to electron-transfer activities of bovine heart submitochondrial particles induced by NADPH-dependent lipid peroxidation. Biochem. J. 1982; 202: 97–105.PubMedGoogle Scholar
  25. (25).
    Said SI, Berisha HI and Pakbaz H. Excitotoxicity in the lung: N-methyl-D-aspartate-induced, nitric oxide-dependent, pulmonary edema is attenuated by vasoactive intestinal peptide and by inhibitors of poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. USA 1996; 93: 4688–4692.PubMedCrossRefGoogle Scholar
  26. (26).
    Said SI, Pakbaz H, Berisha HI and Raza S. NMDA receptor activation: critical role in oxidant tissue injury. Free Radic. Biol. Med. 2000; 28: 1300–1302.PubMedCrossRefGoogle Scholar
  27. (27).
    Berisha HI, Pakbaz H, Absood A and Said SI. Nitric oxide as a mediator of oxidant lung injury due to paraquat. Proc. Natl. Acad. Sci. USA 1994; 91: 7445–7449.PubMedCrossRefGoogle Scholar
  28. (28).
    Day BJ, Patel M, Calavetta L, Chang LY and Stamler JS. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci. USA 1999; 96: 12760–12765.PubMedCrossRefGoogle Scholar
  29. (29).
    Tomita M, Okuyama T, Ishikawa T, Hidaka K and Nohno T. The role of nitric oxide in paraquat-induced cytotoxicity in the human A549 lung carcinoma cell line. Free Radic. Res. 2001; 34: 193–202.PubMedCrossRefGoogle Scholar
  30. (30).
    Junod AF, Jornot L and Petersen H. Differential effects of hyperoxia and hydrogen peroxide on DNA damage, polyadenosine diphosphate-ribose polymerase activity, and nicotinamide adenine dinucleotide and adenosine triphosphate contents in cultured endothelial cells and fibroblasts. J. Cell Physiol. 1989; 140: 177–185.PubMedCrossRefGoogle Scholar
  31. (31).
    Parrado J, Bougria M, Ayala A and Machado A. Induced mono-(ADP)-ribosylation of rat liver cytosolic proteins by lipid peroxidant agents. Free Radic. Biol. Med. 1999; 26: 1079–1084.PubMedCrossRefGoogle Scholar
  32. (32).
    Matsubara M, Yamagami K, Kitazawa Y, Kawamoto K and Tanaka T. Paraquat causes S-phase arrest of rat liver and lung cells in vivo. Arch. Toxicol. 1996; 70: 514–518.PubMedCrossRefGoogle Scholar
  33. (33).
    Melchiorri D, Del Duca C, Piccirilli S, Trombetta G, Bagetta G and Nistico G. Intrahippocampal injection of paraquat produces apoptotic cell death which is prevented by the lazaroid U74389G, in rats. Life Sci. 1998; 62: 1927–1932.PubMedCrossRefGoogle Scholar
  34. (34).
    Vogt M, Bauer MK, Ferrari D and Schulze-Osthoff K. Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Lett. 1998; 429: 67–72.PubMedCrossRefGoogle Scholar
  35. (35).
    Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ and Son JH. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J. Neurochem. 2001; 76: 1010–1021.PubMedCrossRefGoogle Scholar
  36. (36).
    Fabisiak JP, Kagan VE, Ritov VB, Johnson DE and Lazo JS. Bcl-2 inhibits selective oxidation and externalization of phosphatidylserine during paraquat-induced apoptosis. Am. J. Physiol. 1997; 272: C675-C684.PubMedGoogle Scholar
  37. (37).
    Cappelletti G, Maggioni MG and Maci R. Apoptosis in human lung epithelial cells: triggering by paraquat and modulation by antioxidants. Cell Biol. Int. 1998; 22: 671–678.PubMedCrossRefGoogle Scholar
  38. (38).
    Li X and Sun AY. Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells. J. Neural. Transm. 1999; 106: 1–21.PubMedCrossRefGoogle Scholar
  39. (39).
    Franek WR, Horowitz S, Stansberry L, Kazzaz JA, Koo HC, Li Y, Arita Y, Davis JM, Mantell AS, Scott W and Mantell LL. Hyperoxia inhibits oxidant-induced apoptosis in lung epithelial cells. J. Biol. Chem. 2001; 276: 569–575.PubMedCrossRefGoogle Scholar
  40. (40).
    Uhal BD, Joshi I, True AL, Mundle S, Raza A, Pardo A and Selman M. Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am. J. Physiol. 1995; 269: L819–828.PubMedGoogle Scholar
  41. (41).
    Kowald A. The mitochondrial theory of aging. Biol. Signals Recept. 2001; 10: 162–175.PubMedCrossRefGoogle Scholar
  42. (42).
    Sayre LM, Smith MA and Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 2001; 8: 721–738.PubMedGoogle Scholar
  43. (43).
    Takeyama N, Matsuo N and Tanaka T. Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner-membrane permeability transition. Biochem. J. 1993; 294: 719–725.PubMedGoogle Scholar
  44. (44).
    Costantini P, Petronilli V, Colonna R and Bernardi P. On the effect of paraquat on isolated mitochondria. Evidence that paraquat causes opening of the cyclosporin A-sensitive permeability transition pore synergistically with nitric oxide. Toxicology 1995; 99: 77–88.PubMedCrossRefGoogle Scholar
  45. (45).
    Forman HJ, Nelson J and Fisher AB. Rat alveolar macrophages require NADPH for superoxide production in the respiratory burst. Effect of NADPH depletion by paraquat. J. Biol. Chem. 1980; 255: 9879–9883.PubMedGoogle Scholar
  46. (46).
    Keeling PL and Smith LL. Relevance of NADPH depletion and mixed disulphide formation in rat lung to the mechanism of cell damage following paraquat administration. Biochem. Pharmacol. 1982; 31: 3243–3249.PubMedCrossRefGoogle Scholar
  47. (47).
    Nagata S, Gunther H, Bader J and Simon H. Mitochondria catalyze the reduction of NAD by reduced methylviologen. FEBS Lett. 1987; 210: 66–70.PubMedCrossRefGoogle Scholar
  48. (48).
    Milzani A, Dalledonne I, Vailati G and Colombo R. Paraquat induces actin assmbly in depolymerizing cinditions. FASEB J. 1997; 11: 261–270.PubMedGoogle Scholar
  49. (49).
    Schmuck G, Ahr HJ and Schluter G. Rat cortical neuron cultures: an in vitro model for differentiating mechanisms of chemically induced neurotoxicity. In Vitr. Mol. Toxicol. 2000; 13: 37–50.PubMedGoogle Scholar
  50. (50).
    Wright G, Reichenbecher V, Green T, Wright GL and Wang S. Paraquat inhibits the processing of human manganese-dependent superoxide dismutase by SF-9 insect cell mitochondria. Exp. Cell Res. 1997; 234: 78–84.PubMedCrossRefGoogle Scholar
  51. (51).
    Huang TT, Yasunami M, Carlson EJ, Gillespie AM, Reaume AG, Hoffman EK, Chan PH, Scott R and Epstein CJ. Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Arch. Biochem. Biophys. 1997; 344: 424–432.PubMedCrossRefGoogle Scholar
  52. (52).
    Kramer K, Rademaker B, Rozendal WH, Timmerman H and Bast A. Influence of lipid peroxidation on beta-adrenoceptors. FEBS Lett. 1986; 198: 80–84.PubMedCrossRefGoogle Scholar
  53. (53).
    Situnayake RD, Crump BJ, Thurnham DI, Davies JA and Davis M. Evidence for lipid peroxidation in man following paraquat ingestion. Hum. Toxicol. 1987; 6: 94–98.PubMedGoogle Scholar
  54. (54).
    Watanabe N, Shiki Y, Morisaki N, Saito Y and Yoshida S. Cytotoxic effects of paraquat and inhibition of them by vitamin E. Biochim. Biophys. Acta. 1986; 883: 420–425.PubMedGoogle Scholar
  55. (55).
    Autor AP. Reduction of paraquat by superoxide dismutase. Life Sci. 1974; 14: 1309–1319.PubMedCrossRefGoogle Scholar
  56. (56).
    St. Clair DK, Oberley TD and Ho YS. Overproduction of human Mn-superoxide dismutase modulates paraquat-mediated toxicity in mammalian cells. FEBS Lett. 1991; 293: 199–203.PubMedCrossRefGoogle Scholar
  57. (57).
    Raj HG, Sharma RK, Garg BS, Parmar VS, Jain SC, Goel S, Tyagi YK, Singh A, Olsen CE and Wengel J. Mechanism of biochemical action of substituted 4-methylbenzopyran-2-ones. Part 3: A novel mechanism for the inhibition of biological membrane lipid peroxidation by dioxygenated 4-methylcoumarins mediated by the formation of a stable ADP-Fe-inhibitor mixed ligand complex. Bioorg. Med. Chem. 1998; 6: 2205–2212.PubMedCrossRefGoogle Scholar
  58. (58).
    Palmeira CM, Moreno A and Madeira VMC. Mitochondrial bioenergetics is affected by the herbicide paraquat. Biochim. Biophys. Acta. 1995; 1229: 187–192.PubMedCrossRefGoogle Scholar
  59. (59).
    Allen RG, Farmer KJ, Newton RK and Sohal RS. Effects of paraquat administration on longevity, oxygen consumption, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, inorganic peroxides and glutathione in the adult housefly. Comp. Biochem. Physiol. Part C 1984; 78: 283–288.CrossRefGoogle Scholar
  60. (60).
    Yonemitsu K, Nagano M, Sumi M, Ohta J, Egawa H and Futatsuka M. Effects of ascorbic acid and SOD on mortality rates of paraquat-poisoned mice. J. Jpn. Assoc. Rural. Med. 1986; 35: 67–71. (in Japanese)Google Scholar
  61. (61).
    Barabas K, Serenyi P, Selypes A and Matkovics B. The effect of paraquat lung on mononuclear cells. Exp. Pathol. 1988; 34: 115–118.PubMedGoogle Scholar
  62. (62).
    Ogata T and Manabe S. Correlation between lipid peroxidation and morphological manifestation of paraquat-induced lung injury in rats. Arch. Toxicol. 1990; 64: 7–13.PubMedCrossRefGoogle Scholar
  63. (63).
    Tomita M, Okuyama T, Watanabe S and Kawai S. Free malondialdehyde levels in the urine of rats intoxicated with paraquat. Arch Toxicol. 1990; 64: 590–593.PubMedCrossRefGoogle Scholar
  64. (64).
    Brown OR, Heitkamp M and Song CS. Niacin Reduces Paraquat Toxicity in Rats. Science 1981; 212: 1510–1512.PubMedCrossRefGoogle Scholar
  65. (65).
    Fukushima T, Gao T, Tawara T, Hojo N, Isobe A and Yamane Y. Inhibitory effect of nicotinamide to paraquat toxicity and the reaction site on complex 1. Arch. Toxicol. 1997; 71: 633–637.PubMedCrossRefGoogle Scholar
  66. (66).
    Eisenman A, Armali Z, Raikhlin-Eisenkraft B, Bentur L, Bentur Y, Guralnik L and Enat R. Nitric oxide inhalation for paraquat-induced lung injury. J. Toxicol. Clin. Toxicol. 1998; 36: 575–584.PubMedGoogle Scholar
  67. (67).
    Hong SY, Hwang KY, Lee EY, Eun SW, Cho SR, Han CS, Park YH and Chang SK. Effect of vitamin C on plasma total antioxidant status in patients with paraquat intoxication. Toxicol. Lett. 2002; 126: 51–59.PubMedCrossRefGoogle Scholar
  68. (68).
    Hara H, Yoneyama H, Tanabe J and Matsushima T. Observations of the fibrosing process in paraquat lung injury by chest X-ray and CT. Nihon Kyobu Shikkan Gakkai Zasshi 1991; 29: 638–643.PubMedGoogle Scholar
  69. (69).
    Hudson M, Patel SB, Ewen SW, Smith CC and Friend JA. Paraquat induced pulmonary fibrosis in three survivors. Thorax 1991; 46: 201–204.PubMedCrossRefGoogle Scholar
  70. (70).
    Kaetsu A, Fukushima T, Inoue S, Lim H and Moriyama M. Role of heat shock protein 60 (HSP60) on paraquat intoxication. J. Appl. Toxicol. 2001; 21: 425–430.PubMedCrossRefGoogle Scholar
  71. (71).
    Nakamura T, Ushiyama C, Shimada N, Hayashi K, Ebihara I, Suzuki M and Koide H. Changes in concentrations of type IV collagen and tissue inhibitor of metalloproteinase-1 in patients with paraquat poisoning. J. Appl. Toxicol. 2001; 21: 445–447.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Hygiene 2002

Authors and Affiliations

  • Tetsuhito Fukushima
    • 1
  • Keiko Tanaka
    • 1
  • Heejin Lim
    • 1
  • Masaki Moriyama
    • 1
  1. 1.Department of Public Health, School of MedicineFukuoka UniversityFukuokaJapan

Personalised recommendations