Advertisement

Biological Procedures Online

, Volume 1, Issue 1, pp 70–80 | Cite as

Expression of a prokaryotic P-type ATPase in E. coli plasma membranes and purification by Ni2+-affinity chromatography

  • Markus Geisler
Open Access
Article

Abstract

In order to characterize the P-type ATPase from Synechocystis 6803 [Geisler (1993) et al. J. Mol. Biol. 234, 1284] and to facilitate its purification, we expressed an N-terminal 6xHis-tagged version of the ATPase in an ATPase deficient E. coli strain. The expressed ATPase was immunodetected as a dominant band of about 97 kDa localized to the E. coli plasma membranes representing about 20–25% of the membrane protein. The purification of the Synechocystis 6xHis-ATPase by single-step Ni-affinity chromatography under native and denaturating conditions is described. ATPase activity and the formation of phosphointermediates verify the full function of the enzyme: the ATPase is inhibited by vanadate (IC50= 119 μM) and the formation of phosphorylated enzyme intermediates shown by acidic PAGE depends on calcium, indicating that the Synechocystis P-ATPase functions as a calcium pump.

Keywords

ATPase Activity Plasma Membrane Vesicle Biological Procedure Calcium Pump Total Cell Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Møller J.V., Juul B., le Maire M. 1996. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim. Biophys. Acta 1286, 1–51.PubMedGoogle Scholar
  2. 2.
    Tang X., Halleck M.S., Schlegel R.A., Williamson P. 1996. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272, 1595–1497.CrossRefGoogle Scholar
  3. 3.
    Geisler M., Koenen W., Richter J., Schumann J. 1998. Expression and characterization of a Synechocystis PCC 6803 P-type ATPase in E. coli plasma membranes. Biochim. Biophys. Acta 1368, 267–275.PubMedCrossRefGoogle Scholar
  4. 4.
    Jung K., Tjaden B., Altendorf K. (1997) Purification, Reconstitution, and Characterization of kdpD, the Turgor Sensor of Escherichia coli. J. Biol. Chem. 272, 10847–10852.PubMedCrossRefGoogle Scholar
  5. 5.
    Berkelman T., Garret-Engele P., Hoffman N.E. 1994. The pacL gene of Synechococcus sp. Strain PCC 7942 encodes a Ca2+-Transporting ATPase. J. Bacteriol. 176, 4430–4436.PubMedGoogle Scholar
  6. 6.
    Lichtner R., Wolf H.U. 1980. Phosphorylation of the isolated high-affinity (Ca2+ + Mg2+) ATPase of the human erythrocyte membrane. Biochim Biophys Acta 598, 472–85.PubMedCrossRefGoogle Scholar
  7. 7.
    Hsieh W., Pierce W.S., Sze H. 1991. Calcium-pumping ATPases in vesicles from carrot cells. Stimulation by calmodulin or phosphatidylserine, and formation of a 120 kilodalton phosphoenzyme. Plant Physiol 97, 1535–1544.PubMedCrossRefGoogle Scholar
  8. 8.
    Okorokov L.A., Tanner W., Lehle L. 1993. A novel primary Ca2+-transport system from Saccharomyces cerevisiae. FEBS Lett 216, 573–577.Google Scholar
  9. 9.
    Bowman E.M., Siebers A., Altendorf K. 1988. Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. USA 85, 7972–7976.PubMedCrossRefGoogle Scholar
  10. 10.
    Lytton J., Westlin M., Burk S.E., Shull G.E., MacLennan D.H. 1992. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J. Biol. Chem. 267, 14483–14489.PubMedGoogle Scholar
  11. 11.
    Hochuli E., Döbeli H., Schacher A. 1987. New metal chelate adsorbenss selective for proteins and peptide containg neighbouring histidine residues. J. Chromatography 411, 177–184.CrossRefGoogle Scholar
  12. 12.
    Geisler M., Richter J., Schumann J. (1993) Molecular Cloning of a P-type ATPase Gene from the Cyanobacterium Synechocystis sp. PCC 6803. Homology to Eukaryotic Ca2+-ATPases. J. Mol. Biol 243, 1284–128913.CrossRefGoogle Scholar
  13. 13.
    Kaneko T., Sato S., Kotani H., Tanaka A., Azamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., Tabata S. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–13614.PubMedCrossRefGoogle Scholar
  14. 14.
    Siebers A., Altendorf K. 1988. The K+-translocating Kdp-ATPase from Escherichia coli. Eur. J. Biochem 178, 131–140.PubMedCrossRefGoogle Scholar
  15. 15.
    Geisler M., Jakobs B., Richter J., Schumann J. 1996. Expression and Characterization of a Synechocystis PCC 6803 P-type ATPase in E. coli Plasma Membranes. Biochim. Biophys. Acta 1309, 189–193.PubMedGoogle Scholar
  16. 16.
    Clarke D.M., Loo T.W., MacLennan D.H. 1990. Functional Consequences of Mutations of Conserved Amino Acids in the β-Strand Domain of the Ca2+-ATPase of Sarcoplasmic Reticulum. J. Biol. Chem. 265, 14088–14092.PubMedGoogle Scholar
  17. 17.
    Inesi G., Zhang Z., Sagara Y., Kirtley M.E. 1994. Intracellular signaling through long-range linked functions in the Ca2+ transport ATPase. Biophys. Chemistry 50, 129–138.CrossRefGoogle Scholar
  18. 18.
    Sarkadi B., Enyedi A., Földes-Papp Z., Gárdos G. 1986. Molecular Characterization of the in Situ Red Cell Membrane Calucium Pump by Limited Proteolysis. J. Biol. Chem. 261, 9552–9557.PubMedGoogle Scholar
  19. 19.
    Carafoli E. 1991. Calcium Pump of the Plasma Membrane. Phys. Rev. 71 129–153.Google Scholar
  20. 20.
    Carafoli E. 1995. Biogenesis: Plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB 8, 993–1002.Google Scholar
  21. 21.
    Heim R., Iwata T., Zvaritch E., Adamo H.P., Rutishauer B., Strehler E.E., Guerini D., Carafoli E. 1992. Expression, Purification, and Properties of the Plasma Membrane Ca2+ Pump and of Its Nterminally Truncated 105-kDa Fragment. J. Biol. Chem. 267, 24476–24484.PubMedGoogle Scholar
  22. 22.
    Lanfermeijer F.C., Venema K., Palmgren M.G. 1997. Purification of heterologous expressed plant plasma membrane H+-ATPase by Ni2+ affinity chromatography. Ann. NY Acad. Sci. 834, 139–141.PubMedCrossRefGoogle Scholar
  23. 23.
    Papp B., Enyedi A., Kovács T., Sarkadi B., Wuytack F., Thastrup O., Gárdos G., Bredoux R., Levy-Toledano S., Enouf J. 1991. Demonstration of Two Forms of Calcium Pumps by Thapsigargin Inhibition and Radioimmunoblotting in Platelet Membrane Vesicles. J. Biol. Chem. 266, 14593–14596.PubMedGoogle Scholar
  24. 24.
    Laemmli U.K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  25. 25.
    Villalba J.M., Palmgren M.G., Berberián G.E., Ferguson C., Serrano R. 1992. Functional Expression of Plant Plasma Membrane H+-ATPase in Yeast Endoplamic Reticulum. J. Biol. Chem. 267, 12341–12349.PubMedGoogle Scholar
  26. 26.
    Miroux B, Walker J.E. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • Markus Geisler
    • 1
  1. 1.Institut für Biochemie der PflanzenHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations