Biological Procedures Online

, Volume 4, Issue 1, pp 10–23 | Cite as

Isolation, growth and identification of colony-forming cells with erythroid, myeloid, dendritic cell and NK-cell potential from human fetal liver

  • Marcus O. Muench
  • David L. Suskind
  • Alicia Bárcena
Open Access
Article

Abstract

The study of hematopoietic stem cells (HSCs) and the process by which they differentiate into committed progenitors has been hampered by the lack of in vitro clonal assays that can support erythroid, myeloid and lymphoid differentiation. We describe a method for the isolation from human fetal liver of highly purified candidate HSCs and progenitors based on the phenotypes CD38CD34++ and CD38+CD34++, respectively. We also describe a method for the growth of colony-forming cells (CFCs) from these cell populations, under defined culture conditions, that supports the differentiation of erythroid, CD14/CD15+ myeloid, CD1a+ dendritic cell and CD56+ NK cell lineages. Flow cytometric analyses of individual colonies demonstrate that CFCs with erythroid, myeloid and lymphoid potential are distributed among both the CD38 and CD38+ populations of CD34++ progenitors.

Indexing terms

fetal tissue hematopoietic stem cells cell differentiation natural killer cells dendritic cells 

References

  1. 1.
    Lobach DF, Haynes BF. Ontogeny of the human thymus during fetal development J. Clin. Immunol. 1987;7:81–97.PubMedCrossRefGoogle Scholar
  2. 2.
    Bárcena A, Galy AHM, Punnonen J, Muench MO, Schols D, Roncarolo MG, de Vries JE, Spits H. Lymphoid and myeloid differentiation of fetal liver CD34+ lineage- cells in human thymic organ culture J. Exp. Med. 1994;180:123–132.PubMedCrossRefGoogle Scholar
  3. 3.
    Crosbie OM, Reynolds M, McEntee G, Traynor O, Hegarty JE, O’Farrelly C. In vitro evidence for the presence of hematopoietic stem cells in the adult human liver Hepatology 1999;29:1193–1198.PubMedCrossRefGoogle Scholar
  4. 4.
    Humeau L, Namikawa R, Bardin F, Mannoni P, Roncarolo MG, Chabannon C. Ex vivo manipulations alter the reconstitution potential of mobilized human CD34+ peripheral blood progenitors Leukemia 1999;13:438–452.PubMedCrossRefGoogle Scholar
  5. 5.
    Lemoli RM, Tafuri A, Fortuna A, Catani L, Rondelli D, Ratta M, Tura S. Biological characterization of CD34+ cells mobilized into peripheral blood Bone Marrow Transplant. 1998;22(5):S47-S50.PubMedGoogle Scholar
  6. 6.
    Palis J, Yoder MC. Yolk-sac hematopoiesis: The first blood cells of mouse and man Exp. Hematol. 2001;29:927–936.PubMedCrossRefGoogle Scholar
  7. 7.
    Medvinsky AL, Dzierzak EA. Development of the definitive hematopoietic hierarchy in the mouse Dev. Comp. Immunol. 1998;22:289–301.PubMedCrossRefGoogle Scholar
  8. 8.
    Charbord P, Tavian M, Humeau L, Peault B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment Blood 1996;87:4109–4119.PubMedGoogle Scholar
  9. 9.
    Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro Aust. J. Exp. Biol. Med. Sci. 1966;44:287–300.PubMedCrossRefGoogle Scholar
  10. 10.
    Ichikawa Y, Pluznik DH, Sachs L. In vitro control of the development of macrophage and granulocyte colonies Proc. Natl. Acad. Sci. USA 1966;56:488–495.PubMedCrossRefGoogle Scholar
  11. 11.
    Iscove NN, Guilbert LJ, Weyman C. Complete replacement of serum in primary cultures of erythropoietin-dependent red cell precursors (CFU-E) by albumin, transferrin, iron, unsaturated fatty acid, lecithin and cholesterol Exp. Cell Res. 1980;126:121–126.PubMedCrossRefGoogle Scholar
  12. 12.
    Valtieri M, Gabbianelli M, Pelosi E, Bassano E, Petti S, Russo G, Testa U, Peschle C. Erythropoietin alone induces burst formation by human embryonic but not adult BFU-E in unicellular serum-free culture Blood 1989;74:460–470.PubMedGoogle Scholar
  13. 13.
    Bradley TR, Hodgson GS. Detection of primitive macrophage progenitor cells in mouse bone marrow Blood 1979;54:1446–1450.PubMedGoogle Scholar
  14. 14.
    Nakahata T, Ogawa M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies Proc. Natl. Acad. Sci. USA 1982;79:3843–3847.PubMedCrossRefGoogle Scholar
  15. 15.
    McNiece IK, Langley KE, Zsebo KM. The role of recombinant stem cell factor in early B cell development. Synergistic interaction with IL-7 J. Immunol. 1991;146:3785–3790.PubMedGoogle Scholar
  16. 16.
    Hirayama F, Shih JP, Awgulewitsch A, Warr GW, Clark SC, Ogawa M. Clonal proliferation of murine lymphohemopoietic progenitors in culture Proc. Natl. Acad. Sci. USA 1992;89:5907–5911.PubMedCrossRefGoogle Scholar
  17. 17.
    Ashany D, Elkon KB, Migliaccio G, Migliaccio AR. Functional characterization of lymphoid cells generated in serum- deprived culture stimulated with stem cell factor and interleukin 7 from normal and autoimmune mice J. Cell. Physiol. 1995;164:562–570.PubMedCrossRefGoogle Scholar
  18. 18.
    Mrozek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells Blood 1996;87:2632–2640.PubMedGoogle Scholar
  19. 19.
    Ball TC, Hirayama F, Ogawa M. Lymphohematopoietic progenitors of normal mice Blood 1995;85:3086–3092.PubMedGoogle Scholar
  20. 20.
    Aiba Y, Ogawa M. Development of natural killer cells, B lymphocytes, macrophages, and mast cells from single hematopoietic progenitors in culture of murine fetal liver cells Blood 1997;90:3923–3930.PubMedGoogle Scholar
  21. 21.
    Sato T, Laver JH, Aiba Y, Ogawa M. NK cell colony formation from human fetal thymocytes Exp. Hematol. 1999;27:726–733.PubMedCrossRefGoogle Scholar
  22. 22.
    Muench MO, Bárcena A. Broad distribution of colony-forming cells with erythroid, myeloid, dendritic cell and NK cell potential among CD34++ fetal liver cells J. Immunol. 2001;167:4902–4909.PubMedGoogle Scholar
  23. 23.
    Muench MO, Bárcena A, Ohkubo T, Harrison MR. Requirement of retinoids for the expression of CD38 on human hematopoietic progenitors in vitro Cytotherapy 1999;1:455–467.CrossRefGoogle Scholar
  24. 24.
    Xiao M, Dooley DC. Cellular and molecular aspects of human CD34+ CD38 precursors: analysis of a primitive hematopoietic population Leuk. Lymph. 2000;38:489–497.Google Scholar
  25. 25.
    Golfier F, Bárcena A, Cruz J, Harrison MR, Muench MO. Mid-trimester fetal livers are a rich source of CD34+/++ cells for transplantation Bone Marrow Transplant. 1999;24:451–461.PubMedCrossRefGoogle Scholar
  26. 26.
    Muench MO, Namikawa R. Disparate regulation of human fetal erythropoiesis by the microenvironments of the liver and bone marrow Blood Cells Mol. Dis. 2001;27:377–390.PubMedCrossRefGoogle Scholar
  27. 27.
    Muench MO, Humeau L, Paek B, Ohkubo T, Lanier LL, Albanese CT, Bárcena A. Differential effects of interleukin-3, interleukin-7, interleukin 15, and granulocyte-macrophage colony-stimulating factor in the generation of natural killer and B cells from primitive human fetal liver progenitors Exp. Hematol. 2000;28:961–973.PubMedCrossRefGoogle Scholar
  28. 28.
    Ferlazzo G, Klein J, Paliard X, Wei WZ, Galy A. Dendritic cells generated from CD34+ progenitor cells with flt3 ligand, c-kit ligand, GM-CSF, IL-4, and TNFalpha are functional antigen- presenting cells resembling mature monocyte-derived dendritic cells J. Immunother. 2000;23:48–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Curti A, Fogli M, Ratta M, Tura S, Lemoli RM. Stem cell factor and FLT3-ligand are strictly required to sustain the long-term expansion of primitive CD34+DR- dendritic cell precursors J. Immunol. 2001;166:848–854.PubMedGoogle Scholar
  30. 30.
    Bykovskaia SN, Buffo M, Zhang H, Bunker M, Levitt ML, Agha M, Marks S, Evans C, Ellis P, Shurin MR, Shogan J. The generation of human dendritic and NK cells from hemopoietic progenitors induced by interleukin-15 J. Leukoc. Biol. 1999;66:659–666.PubMedGoogle Scholar
  31. 31.
    Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset Immunity 1995;3:459–473.PubMedCrossRefGoogle Scholar
  32. 32.
    Muench MO, Roncarolo MG, Menon S, Xu Y, Kastelein R, Zurawski S, Hannum CH, Culpepper J, Lee F, Namikawa R. FLK-2/FLT-3 ligand (FL) regulates the growth of early myeloid progenitors isolated from human fetal liver Blood 1995;85:963–972.PubMedGoogle Scholar
  33. 33.
    33. Muench MO, Cupp J, Polakoff J, Roncarolo MG. Expression of CD33, CD38 and HLA-DR on CD34+ human fetal liver progenitors with a high proliferative potential Blood 1994;83:3170–3181.PubMedGoogle Scholar
  34. 34.
    34. Hogan CJ, Shpall EJ, Keller G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice Proc. Natl. Acad. Sci. USA 2002;99:413–418.PubMedCrossRefGoogle Scholar
  35. 35.
    35. Zhou LJ, Tedder TF. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells Proc. Natl. Acad. Sci. USA 1996;93:2588–2592.PubMedCrossRefGoogle Scholar
  36. 36.
    Spits H, Couwenberg F, Bakker AQ, Weijer K, Uittenbogaart CH. Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2 J. Exp. Med. 2000;192:1775–1784.PubMedCrossRefGoogle Scholar
  37. 37.
    de Yebenes VG, Carrasco YR, Ramiro AR, Toribio ML. Identification of a myeloid intrathymic pathway of dendritic cell development marked by expression of the granulocyte macrophage-colony- stimulating factor receptor Blood 2002;99:2948–2956.PubMedCrossRefGoogle Scholar
  38. 38.
    Ogawa M. Stochastic model revisited Int. J. Hematol. 1999;69:2–5.PubMedGoogle Scholar
  39. 39.
    Hao QL, Zhu J, Price MA, Payne KJ, Barsky LW, Crooks GM. Identification of a novel, human multilymphoid progenitor in cord blood Blood 2001;97:3683–3690.PubMedCrossRefGoogle Scholar
  40. 40.
    Rice HE, Hedrick MH, Flake AW, Donegan E, Harrison MR. Bacterial and fungal contamination of human fetal liver collected transvaginally for hematopoietic stem cell transplantation Fetal Diagn. Ther. 1993;8:74–78.PubMedCrossRefGoogle Scholar
  41. 41.
    Hern WM. Correlation of fetal age and measurements between 10 and 26 weeks of gestation Obstet. Gynecol. 1984;63:26–32.PubMedGoogle Scholar
  42. 42.
    Mercer BM, Sklar S, Shariatmadar A, Gillieson MS, D’Alton ME. Fetal foot length as a predictor of gestational age Am. J. Obstet. Gynecol. 1987;156:350–355.PubMedGoogle Scholar
  43. 43.
    Merz E, Oberstein A, Wellek S. Age-related reference ranges for fetal foot length Ultraschall. Med. 2000;21:79–85.PubMedCrossRefGoogle Scholar
  44. 44.
    44. Mychaliska GB, Muench MO, Rice HE, Leavitt AD, Cruz J, Harrison MR. The biology and ethics of banking fetal liver hematopoietic stem cells for in utero transplantation. J. Pediatr. Surg. 1998;33:394–399.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Marcus O. Muench
    • 1
  • David L. Suskind
    • 1
  • Alicia Bárcena
    • 1
  1. 1.Department of Laboratory MedicineUniversity of California at San FranciscoSan Francisco

Personalised recommendations