A method for assaying deubiquitinating enzymes
- 296 Downloads
- 5 Citations
Abstract
A general method for the assay of deubiquitinating enzymes was described in detail using 125I-labeled ubiquitin-fused αNH-MHISPPEPESEEEEEHYC (referred to as Ub-PESTc) as a substrate. Since the tyrosine residue in the PESTc portion of the fusion protein was almost exclusively radioiodinated under a mild labeling condition, such as using IODO-BEADS, the enzymes could be assayed directly by simple measurement of the radioactivity released into acid soluble products. Using this assay protocol, we could purify six deubiquitinating enzymes from chick skeletal muscle and yeast and compare their specific activities. Since the extracts of E. coli showed little or no activity against the substrate, the assay protocol should be useful for identification and purification of eukaryotic deubiquitinating enzymes cloned and expressed in the cells.
Keywords
Assay Protocol Biological Procedure Strain AR13 Deubiquitinating Enzyme Biological Procedure OnlineReferences
- 1.Rechsteiner, M. 1987. Ubiquitin-mediated pathways for intracellular proteolysis. Annu. Rev. Cell Biol. 3, 1–30.PubMedCrossRefGoogle Scholar
- 2.Hershko, A., and Ciechanover, A. 1992. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61, 761–807.PubMedCrossRefGoogle Scholar
- 3.Jentsch, S. 1992. The ubiquitin-conjugating system. Annu. Rev. Genet. 26, 179–207.PubMedCrossRefGoogle Scholar
- 4.Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439.PubMedCrossRefGoogle Scholar
- 5.Wilkinson, K.D. 1995. Roles of ubiquitinylation in proteolysis and cellular regulation. Annu. Rev. Nutr. 15, 161–189.PubMedCrossRefGoogle Scholar
- 6.Carlson, N., and Rechsteiner, M. 1987. Microinjection of ubiquitin: Intracellular distribution of and metabolism in HeLa cells maintained under normal physiological conditions. J. Cell Biol. 104, 537–546.PubMedCrossRefGoogle Scholar
- 7.Carlson, N., Rogers, S., and Rechsteiner, M. 1987. Microinjection of ubiquitin: Changes in protein degradation in HeLa cells subjected to heat-shock. J. Cell Biol. 104, 547–555.PubMedCrossRefGoogle Scholar
- 8.Haas, A.L. 1988. Immunochemical probes of Ub pool dynamics. In Ubiquitin (Rechsteiner, M., ed.) pp. 173–206, Plenum Press, New York.Google Scholar
- 9.Ozkaynak, E., Finley, D., and Varshavsky, A. 1984. The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312, 663–666.PubMedCrossRefGoogle Scholar
- 10.Lund, P.K., Moasts-Staats, B.M., Simmons, J.G., Hoyt, E., D’Ercole, A.J., Martin, F., and Van Wyk, J.J. 1985. Nucleotide sequence analysis of a cDNA encoding human ubiquitin reveals that ubiquitin is synthesized as a precursor. J. Biol. Chem. 260, 7609–7613.PubMedGoogle Scholar
- 11.Finley, D., Bartel, B., and Varshavsky, A. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401.PubMedCrossRefGoogle Scholar
- 12.Wilkinson, K.D. 1997. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11, 1245–1256.PubMedGoogle Scholar
- 13.Woo, S.K., Lee, J.I., Park, I.K., Yoo, Y.J., Cho, J.M., Tanaka, K., Kang, M.S., Ha, D.B. and Chung, C.H. 1995. Multiple ubiquitin C-terminal hydrolases from chick skeletal muscle. J. Biol. Chem. 270, 18766–18773.PubMedCrossRefGoogle Scholar
- 14.Chung, C.H., Woo, S.K., Lee, J.I., Park, I.K., Kang, M.S. and Ha, D.B. 1996. Ubiquitin Cterminal hydrolases in chick skeletal muscle. Adv. Exp. Med. Biol. 384, 203–208.Google Scholar
- 15.Baek, S.H., Choi, K.S., Yoo, Y.J., Cho, J.M., Baker, R.T., Tanaka, K. and Chung, C.H. 1997. Molecular cloning of a novel ubiquitin-specific protease, UBP41, with isopeptidase activity in chick skeletal muscle. J. Biol. Chem. 272, 25560–25565.PubMedCrossRefGoogle Scholar
- 16.Woo, S.K., Baek, S.H., Lee, J.I., Yoo, Y.J., Cho, J.M., Kang, M.S. and Chung, C.H. 1997. Purification and characterization of a new ubiquitin C-terminal hydrolase (UCH-1) with isopeptidase activity from chick skeletal muscle. J. Biochem. 121, 684–689.PubMedGoogle Scholar
- 17.Baek, S.H., Woo, S.K., Lee, J.I., Yoo, Y.J., Cho, J.M., Kang, M.S., Tanaka, K. and Chung, C.H. 1997. New de-ubiquitinating enzyme, ubiquitin C-terminal hydrolase 8, in chick skeletal muscle. Biochem. J. 325, 325–330.PubMedGoogle Scholar
- 18.Park, K.C., Woo, S.K., Yoo, Y.J., Wyndham, A.M., Baker, R.T. and Chung, C.H. 1997. Purification and characterization of UBP6, a new ubiquitin specific protease in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 347, 78–84.PubMedCrossRefGoogle Scholar
- 19.Stein, R.L., Chen, Z., and Melandri, F. 1995. Kinetic studies of isopeptidase T: Modulation of peptidase activity by ubiquitin. Biochemistry 34, 12616–12623.PubMedCrossRefGoogle Scholar
- 20.Miller, H.I., Henzel, W.J., Ridgway, J.B., Kuang, W.J., Chisholm, V., and Liu, C.C. 1989. Cloning and expression of a yeast ubiquitin-protein cleaving activity in E. coli. Bio/Technology 7, 698–704.CrossRefGoogle Scholar
- 21.Yoo, Y., Rote, K., and Rechsteiner, M. 1989. Synthesis of peptides as cloned ubiquitin extensions. J. Biol. Chem. 264, 17078–17083.PubMedGoogle Scholar
- 22.Markwell, M.A.K. 1982. A new solid-phase reagent to iodinate proteins. Anal. Biochem. 125, 427–435.PubMedCrossRefGoogle Scholar
- 23.Yoo, S.J., Seol, J.H., Shin, D.H., Rohrwild, M., Kang, M.S., Tanaka, K., Goldberg, A.L., and Chung, C.H. 1996. Purification and characterization of the heat shock proteins HslV and HslU that forms a new ATP-dependent protease in Escherichia coli. J. Biol. Chem. 271, 14035–14040.PubMedCrossRefGoogle Scholar
- 24.Bradford, M.M. A rapid and sensitive method of quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.Google Scholar
- 25.Schägger, H., and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.PubMedCrossRefGoogle Scholar
- 26.Hershko, A., and Rose, I.A. 1977. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-protein ligase system. Proc. Natl. Acad. Sci. U.S.A. 84, 1829–1833.CrossRefGoogle Scholar
- 27.Wilkinson, K.D., Tashayev, V.L., O’Connor, L.B., Larsen, C.N., Kasperek, E., and Pickart, C.M. 1995. Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry 34, 14535–14546.PubMedCrossRefGoogle Scholar
- 28.Baek, S.H., and Chung, C.H. manuscript in preparation.Google Scholar
- 29.Dang, L.C., Melandri, F.D., and Stein, R.L. 1998. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry 37, 1868–1879.PubMedCrossRefGoogle Scholar
- 30.Wilkinson, K.D., Deshpande, S., and Larsen, C.N. 1992. Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. Biochem. Soc. Trans. 20, 631–636.PubMedGoogle Scholar