Skip to main content
Log in

Accuracy and Prognostic Impact of Nodal Status on Preoperative Imaging for Management of Pancreatic Neuroendocrine Tumors: A Multi-Institutional Study

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

We sought to define the accuracy of preoperative imaging to detect lymph node metastasis (LNM) among patients with pancreatic neuroendocrine tumors (pNETs), as well as characterize the impact of preoperative imaging nodal status on survival.

Methods

Patients who underwent curative-intent resection for pNETs between 2000 and 2020 were identified from eight centers. Sensitivity and specificity of computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)-CT, and OctreoScan for LNM were evaluated. The impact of preoperative lymph node status on lymphadenectomy (LND), as well as overall and recurrence-free survival was defined.

Results

Among 852 patients, 235 (27.6%) individuals had LNM on final histologic examination (hN1). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 12.4%, 98.1%, 71.8%, and 74.4% for CT, 6.3%, 100%, 100%, and 80.1% for MRI, 9.5%, 100%, 100%, and 58.7% for PET, 11.3%, 97.5%, 66.7%, and 70.8% for OctreoScan, respectively. Among patients with any combination of these imaging modalities, overall sensitivity, specificity, PPV, and NPV was 14.9%, 97.9%, 72.9%, and 75.1%, respectively. Preoperative N1 on imaging (iN1) was associated with a higher number of LND (iN1 13 vs. iN0 9, p = 0.003) and a higher frequency of final hN1 versus preoperative iN0 (iN1 72.9% vs. iN0 24.9%, p < 0.001). Preoperative iN1 was associated with a higher risk of recurrence versus preoperative iN0 (median recurrence-free survival, iN1→hN1 47.5 vs. iN0→hN1 92.7 months, p = 0.05).

Conclusions

Only 4% of patients with LNM on final pathologic examine had preoperative imaging that was suspicious for LNM. Traditional imaging modalities had low sensitivity to determine nodal status among patients with pNETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xu Z, Wang L, Dai S, et al. Epidemiologic trends of and factors associated with overall survival for patients with gastroenteropancreatic neuroendocrine tumors in the United States. JAMA Netw Open. 2021;4:e2124750.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3:1335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stensbol AB, Krogh J, Holmager P, et al. Incidence, clinical presentation and trends in indication for diagnostic work-up of small intestinal and pancreatic neuroendocrine tumors. Diagnostics (Basel). 2021;11.

  4. Boyar Cetinkaya R, Aagnes B, Thiis-Evensen E, Tretli S, Bergestuen DS, Hansen S. Trends in incidence of neuroendocrine neoplasms in Norway: a report of 16,075 cases from 1993 through 2010. Neuroendocrinology. 2017;104:1–10.

    Article  CAS  PubMed  Google Scholar 

  5. Hallet J, Law CH, Cukier M, Saskin R, Liu N, Singh S. Exploring the rising incidence of neuroendocrine tumors: A population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer. 2015;121:589–97.

    Article  PubMed  Google Scholar 

  6. Pavel M, Oberg K, Falconi M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31:844–60.

    Article  CAS  PubMed  Google Scholar 

  7. Osher E, Shalabna E, Klausner JM, et al. A lymph node ratio model for prognosis of patients with pancreatic neuroendocrine tumors. Biomedicines. 2023;11.

  8. Chen JW, Heidsma CM, Engelsman AF, et al. Clinical prediction models for recurrence in patients with resectable grade 1 and 2 sporadic nonfunctional pancreatic neuroendocrine tumors: a systematic review. Cancers (Basel). 2023;15.

  9. Heidsma CM, van Roessel S, van Dieren S, et al. International validation of a nomogram to predict recurrence after resection of grade 1 and 2 nonfunctioning pancreatic neuroendocrine tumors. Neuroendocrinology. 2022;112:571–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rindi G, Falconi M, Klersy C, et al. TNM staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J Natl Cancer Inst. 2012;104:764–77.

    Article  CAS  PubMed  Google Scholar 

  11. Rindi G, Petrone G, Inzani F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endocr Pathol. 2014;25:186–92.

    Article  CAS  PubMed  Google Scholar 

  12. Amin MB. American Joint Committee on Cancer: AJCC cancer staging manual. 8th edn. New York: Springer; 2017.

    Google Scholar 

  13. Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours, 8th edn. Wiley-Blackwell; 2017.

  14. Souche R, Hobeika C, Hain E, Gaujoux S. Surgical management of neuroendocrine tumours of the pancreas. J Clin Med. 2020;9.

  15. Brunner SM, Weber F, Werner JM, et al. Neuroendocrine tumors of the pancreas: a retrospective single-center analysis using the ENETS TNM-classification and immunohistochemical markers for risk stratification. BMC Surg. 2015;15:49.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wong J, Fulp WJ, Strosberg JR, Kvols LK, Centeno BA, Hodul PJ. Predictors of lymph node metastases and impact on survival in resected pancreatic neuroendocrine tumors: a single-center experience. Am J Surg. 2014;208:775–80.

    Article  PubMed  Google Scholar 

  17. Conrad C, Kutlu OC, Dasari A, et al. Prognostic value of lymph node status and extent of lymphadenectomy in pancreatic neuroendocrine tumors confined to and extending beyond the pancreas. J Gastrointest Surg. 2016;20:1966–74.

    Article  PubMed  Google Scholar 

  18. Taki K, Hashimoto D, Nakagawa S, et al. Significance of lymph node metastasis in pancreatic neuroendocrine tumor. Surg Today. 2017;47:1104–10.

    Article  PubMed  Google Scholar 

  19. Guarneri G, de Mestier L, Landoni L, et al. Prognostic role of examined and positive lymph nodes after distal pancreatectomy for non-functioning neuroendocrine neoplasms. Neuroendocrinology. 2021;111:728–38.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang XF, Xue F, Dong DH, et al. New nodal staging for primary pancreatic neuroendocrine tumors: a multi-institutional and national data analysis. Ann Surg. 2021;274:e28–35.

    Article  PubMed  Google Scholar 

  21. Tan Q, Wang X, Li Y, Liu Y, Liu X, Ke N. Prognostic factors of small non-functional pancreatic neuroendocrine tumors and the risk of lymph node metastasis: a population-level study. Front Endocrinol (Lausanne). 2022;13:907415.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kapoor M, Kasi A. Octreotide scan. StatPearls. Treasure Island (FL)2023.

  23. Zhu HB, Nie P, Jiang L, et al. Preoperative prediction of lymph node metastasis in nonfunctioning pancreatic neuroendocrine tumors from clinical and MRI features: a multicenter study. Insights Imaging. 2022;13:162.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Choi SH, Kim HJ, Kim SY, et al. Computed tomography features predictive of lymph node involvement in patients with a nonfunctioning pancreatic neuroendocrine tumor. Pancreas. 2017;46:1056–63.

    Article  PubMed  Google Scholar 

  25. Partelli S, Muffatti F, Andreasi V, et al. A single-center prospective observational study investigating the accuracy of preoperative diagnostic procedures in the assessment of lymph node metastases in nonfunctioning pancreatic neuroendocrine tumors. Ann Surg. 2022;276:921–8.

    Article  PubMed  Google Scholar 

  26. World Health O, V LR, Y OR, Guenter K, Juan R, International Agency For Research On C. WHO classification of tumours of endocrine organs, 4th edn. Lyon: International Agency for Research on Cancer; 2017.

  27. Hashim YM, Trinkaus KM, Linehan DC, et al. Regional lymphadenectomy is indicated in the surgical treatment of pancreatic neuroendocrine tumors (PNETs). Ann Surg. 2014;259:197–203.

    Article  PubMed  Google Scholar 

  28. Partelli S, Gaujoux S, Boninsegna L, et al. Pattern and clinical predictors of lymph node involvement in nonfunctioning pancreatic neuroendocrine tumors (NF-PanNETs). JAMA Surg. 2013;148:932–9.

    Article  PubMed  Google Scholar 

  29. Tsutsumi K, Ohtsuka T, Fujino M, et al. Analysis of risk factors for recurrence after curative resection of well-differentiated pancreatic neuroendocrine tumors based on the new grading classification. J Hepatobiliary Pancreat Sci. 2014;21:418–25.

    Article  PubMed  Google Scholar 

  30. van der Velden DL, Staal FCR, Aalbersberg EA, Castagnoli F, Wilthagen E, Beets-Tan RGH. Prognostic value of CT characteristics in GEP-NET: a systematic review. Crit Rev Oncol Hematol. 2022;175:103713.

    Article  PubMed  Google Scholar 

  31. Amin MB. American joint committee on cancer. New York: Springer; 2017.

    Google Scholar 

  32. Rindi G, Kloppel G, Couvelard A, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2007;451:757–62.

    Article  CAS  PubMed  Google Scholar 

  33. Rindi G, Kloppel G, Alhman H, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aziz H, Howe JR, Pawlik TM. Surgery vs observation for patients with small pancreatic neuroendocrine tumors. JAMA Surg. 2021;156:412–3.

    Article  PubMed  Google Scholar 

  35. Dong DH, Zhang XF, Poultsides G, et al. Impact of tumor size and nodal status on recurrence of nonfunctional pancreatic neuroendocrine tumors ≤2 cm after curative resection: a multi-institutional study of 392 cases. J Surg Oncol. 2019;120:1071–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kuo EJ, Salem RR. Population-level analysis of pancreatic neuroendocrine tumors 2 cm or less in size. Ann Surg Oncol. 2013;20:2815–21.

    Article  PubMed  Google Scholar 

  37. Park HJ, Kim HJ, Kim JH, et al. Prognostic value of tumor-to-parenchymal contrast enhancement ratio on portal venous-phase CT in pancreatic neuroendocrine neoplasms. Eur Radiol. 2023;33:2713–24.

    Article  PubMed  Google Scholar 

  38. Osei-Bordom DC, Serifis N, Brown ZJ, et al. Pancreatic ductal adenocarcinoma: emerging therapeutic strategies. Surg Oncol. 2022;43:101803.

    Article  PubMed  Google Scholar 

  39. Aziz H, Pawlik TM. We asked the experts: Role of lymphadenectomy in surgical management of intrahepatic cholangiocarcinoma. World J Surg. 2023;47:1530–2.

    Article  PubMed  Google Scholar 

  40. Zhang XF, Chakedis J, Bagante F, et al. Trends in use of lymphadenectomy in surgery with curative intent for intrahepatic cholangiocarcinoma. Br J Surg. 2018;105:857–66.

    Article  PubMed  Google Scholar 

  41. Zhang XF, Chen Q, Kimbrough CW, et al. Lymphadenectomy for intrahepatic cholangiocarcinoma: has nodal evaluation been increasingly adopted by surgeons over time? a national database analysis. J Gastrointest Surg. 2018;22:668–75.

    Article  PubMed  Google Scholar 

  42. Cloyd JM, Poultsides GA. The landmark series: pancreatic neuroendocrine tumors. Ann Surg Oncol. 2021;28:1039–49.

    Article  PubMed  Google Scholar 

  43. Sahara K, Tsilimigras DI, Mehta R, et al. Trends in the number of lymph nodes evaluated among patients with pancreatic neuroendocrine tumors in the United States: a multi-institutional and national database analysis. Ann Surg Oncol. 2020;27:1203–12.

    Article  PubMed  Google Scholar 

  44. Heidsma CM, Tsilimigras DI, Rocha F, et al. Identifying risk factors and patterns for early recurrence of pancreatic neuroendocrine tumors: a multi-institutional study. Cancers (Basel). 2021;13.

  45. Worhunsky DJ, Krampitz GW, Poullos PD, et al. Pancreatic neuroendocrine tumours: hypoenhancement on arterial phase computed tomography predicts biological aggressiveness. HPB (Oxford). 2014;16:304–11.

    Article  PubMed  Google Scholar 

  46. Cloyd JM, Kopecky KE, Norton JA, et al. Neuroendocrine tumors of the pancreas: degree of cystic component predicts prognosis. Surgery. 2016;160:708–13.

    Article  PubMed  Google Scholar 

  47. Gunasekaran G, Bekki Y, Lourdusamy V, Schwartz M. Surgical treatments of hepatobiliary cancers. Hepatology. 2021;73(Suppl 1):128–36.

    Article  PubMed  Google Scholar 

  48. Tsilimigras DI, Sahara K, Paredes AZ, et al. Predicting lymph node metastasis in intrahepatic cholangiocarcinoma. J Gastrointest Surg. 2021;25:1156–63.

    Article  PubMed  Google Scholar 

  49. Yun G, Kim YH, Lee YJ, Kim B, Hwang JH, Choi DJ. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. Sci Rep. 2018;8:7226.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mizumoto T, Toyama H, Terai S, et al. Prediction of lymph node metastasis in pancreatic neuroendocrine tumors by contrast enhancement characteristics. Pancreatology. 2017;17:956–61.

    Article  PubMed  Google Scholar 

  51. Sun H, Zhou J, Liu K, Shen T, Wang X, Wang X. Pancreatic neuroendocrine tumors: MR imaging features preoperatively predict lymph node metastasis. Abdom Radiol (NY). 2019;44:1000–9.

    Article  PubMed  Google Scholar 

  52. Lim S, Chong L, Peeroo S, et al. Recurrence and outcomes of non-functional pancreatic neuroendocrine tumours post-resection: an Australian retrospective, multicentre cohort study. ANZ J Surg. 2023;93:160–5.

    Article  PubMed  Google Scholar 

  53. Mori M, Palumbo D, Muffatti F, et al. Prediction of the characteristics of aggressiveness of pancreatic neuroendocrine neoplasms (PanNENs) based on CT radiomic features. Eur Radiol. 2023;33:4412–21.

    Article  CAS  PubMed  Google Scholar 

  54. Benedetti G, Mori M, Panzeri MM, et al. CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors. Radiol Med. 2021;126:745–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Feng Zhang MD, PhD or Timothy M. Pawlik MD, PhD, MPH, MTS, MBA, FACS, FSSO, FRACS (Hon.).

Ethics declarations

Disclosures

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 176 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., He, J., Maithel, S.K. et al. Accuracy and Prognostic Impact of Nodal Status on Preoperative Imaging for Management of Pancreatic Neuroendocrine Tumors: A Multi-Institutional Study. Ann Surg Oncol 31, 2882–2891 (2024). https://doi.org/10.1245/s10434-023-14758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-14758-9

Keywords

Navigation