Skip to main content

Advertisement

Log in

Comparative Study of Indocyanine Green Fluorescence Imaging in Lung Cancer with Near-Infrared-I/II Windows

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

We compare the application of intravenous indocyanine green (ICG) fluorescence imaging in lung cancer with near-infrared-I (NIR-I) and near-infrared-II (NIR-II) windows.

Methods

From March to December 2022, we enrolled patients who received an intravenous injection of ICG (5 mg/kg) 1 day before the planned lung cancer surgery. The lung cancer nodules were imaged by NIR-I/II fluorescence imaging systems, and the tumor-to-normal-tissue ratio (TNR) was calculated. In addition, the fluorescence intensity and signal-to-background ratio (SBR) of capillary glass tubes containing ICG covered with different thicknesses of lung tissue were measured by NIR-I/II fluorescence imaging systems.

Results

In this study, 102 patients were enrolled, and the mean age was 59.9 ± 9.2 years. A total of 96 (94.1%) and 98 (96.1%) lung nodules were successfully imaged with NIR-I and NIR-II fluorescence, and the TNR of NIR-II was significantly higher than that of NIR-I (3.9 ± 1.3 versus 2.4 ± 0.6, P < 0.001). In multiple linear regression, solid nodules (P < 0.001) and squamous cell carcinoma (P < 0.001) were independent predictors of a higher TNR of NIR-I/II. When capillary glass tubes were covered with lung tissue whose thickness was more than 2 mm, the fluorescence intensity and the SBR of NIR-II were significantly higher than those of NIR-I.

Conclusions

We verified the feasibility of NIR-II fluorescence imaging in intravenous ICG lung cancer imaging for the first time. NIR-II fluorescence can improve the TNR and penetration depth of lung cancer with promising clinical prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gould MK, Tang T, Liu IL, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. 2015;192(10):1208–14.

    Article  PubMed  Google Scholar 

  2. Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet. 2022;399(10335):1607–17.

    Article  CAS  PubMed  Google Scholar 

  3. Taioli E, Yip R, Olkin I, et al. Survival after sublobar resection for early-stage lung cancer: methodological obstacles in comparing the efficacy to lobectomy. J Thorac Oncol. 2016;11(3):400–6.

    Article  PubMed  Google Scholar 

  4. Aliperti LA, Predina JD, Vachani A, et al. Local and systemic recurrence is the Achilles heel of cancer surgery. Ann Surg Oncol. 2011;18(3):603–7.

    Article  PubMed  Google Scholar 

  5. Sato M. Precise sublobar lung resection for small pulmonary nodules: localization and beyond. Gen Thorac Cardiovasc Surg. 2020;68(7):684–91.

    Article  PubMed  Google Scholar 

  6. Park CH, Han K, Hur J, et al. Comparative effectiveness and safety of preoperative lung localization for pulmonary nodules: a systematic review and meta-analysis. Chest. 2017;151(2):316–28.

    Article  PubMed  Google Scholar 

  7. Okusanya OT, Holt D, Heitjan D, et al. Intraoperative near-infrared imaging can identify pulmonary nodules. Ann Thorac Surg. 2014;98(4):1223–30.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mao Y, Chi C, Yang F, et al. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries. Eur J Cardiothorac Surg. 2017;52(6):1190–6.

    Article  PubMed  Google Scholar 

  9. He S, Song J, Qu J, et al. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem Soc Rev. 2018;47(12):4258–78.

    Article  CAS  PubMed  Google Scholar 

  10. Li S, Cheng D, He L, et al. Recent progresses in NIR-I/II fluorescence imaging for surgical navigation. Front Bioeng Biotechnol. 2021;9:768698.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cao C, Jin Z, Shi X, et al. First clinical investigation of near-infrared window IIa/IIb fluorescence imaging for precise surgical resection of gliomas. IEEE Trans Biomed Eng. 2022;69(8):2404–13.

    Article  PubMed  ADS  Google Scholar 

  12. Newton AD, Predina JD, Corbett CJ, et al. Optimization of second window indocyanine green for intraoperative near-infrared imaging of thoracic malignancy. J Am Coll Surg. 2019;228(2):188–97.

    Article  PubMed  Google Scholar 

  13. Yang W, Qin W, Hu Z, et al. Comparison of Cerenkov luminescence imaging (CLI) and gamma camera imaging for visualization of let-7 expression in lung adenocarcinoma A549 cells. Nucl Med Biol. 2012;39(7):948–53.

    Article  CAS  PubMed  Google Scholar 

  14. Cai M, Zhang Z, Shi X, et al. Non-negative iterative convex refinement approach for accurate and robust reconstruction in cerenkov luminescence tomography. IEEE Trans Med Imaging. 2020;39(10):3207–17.

    Article  PubMed  Google Scholar 

  15. Zheng S, Zhang Z, Qu Y, et al. Radiopharmaceuticals and fluorescein sodium mediated triple-modality molecular imaging allows precise image-guided tumor surgery. Adv Sci. 2019;6(13):1900159.

    Article  Google Scholar 

  16. Zhou J, Yang F, Jiang G, et al. Applications of indocyanine green based near-infrared fluorescence imaging in thoracic surgery. J Thorac Dis. 2016;8(Suppl 9):S738-s743.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kosaka N, Mitsunaga M, Longmire MR, et al. Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. Int J Cancer. 2011;129(7):1671–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Madajewski B, Judy BF, Mouchli A, et al. Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease. Clin Cancer Res. 2012;18(20):5741–51.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

    CAS  PubMed  Google Scholar 

  20. Kennedy GT, Azari FS, Chang A, et al. Comparative experience of short-wavelength versus long-wavelength fluorophores for intraoperative molecular imaging of lung cancer. Ann Surg. 2022;276(4):711–9.

    Article  PubMed  Google Scholar 

  21. van Manen L, Handgraaf HJM, Diana M, et al. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol. 2018;118(2):283–300.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tipirneni KE, Warram JM, Moore LS, et al. Oncologic procedures amenable to fluorescence-guided surgery. Ann Surg. 2017;266(1):36–47.

    Article  PubMed  Google Scholar 

  23. Hutteman M, Mieog JS, van der Vorst JR, et al. Randomized, double-blind comparison of indocyanine green with or without albumin premixing for near-infrared fluorescence imaging of sentinel lymph nodes in breast cancer patients. Breast Cancer Res Treat. 2011;127(1):163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ding F, Zhan Y, Lu X, et al. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci. 2018;9(19):4370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi X, Zhang Z, Zhang Z, et al. Near-infrared window II fluorescence image-guided surgery of high-grade gliomas prolongs the progression-free survival of patients. IEEE Trans Biomed Eng. 2022;69(6):1889–900.

    Article  PubMed  Google Scholar 

  26. Li C, Mi J, Wang Y, et al. New and effective EGFR-targeted fluorescence imaging technology for intraoperative rapid determination of lung cancer in freshly isolated tissue. Eur J Nucl Med Mol Imaging. 2023;50(2):494–507.

    Article  CAS  PubMed  Google Scholar 

  27. Qu Q, Nie H, Hou S, et al. Visualisation of pelvic autonomic nerves using NIR-II fluorescence imaging. Eur J Nucl Med Mol Imaging. 2022;49(13):4752–4.

    Article  PubMed  Google Scholar 

  28. Zhang Z, Fang C, Zhang Y, et al. NIR-II nano fluorescence image guided hepatic carcinoma resection on cirrhotic patient. Photodiagnos Photodyn Ther. 2022;40:103098.

    Article  Google Scholar 

  29. Chang B, Li D, Ren Y, et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat Biomed Eng. 2022;6(5):629–39.

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, He S, Hu Z, et al. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows. Nano Today. 2021;38:101120.

    Article  CAS  Google Scholar 

  31. Zhang L, Shi X, Li Y, et al. Visualizing tumors in real time: a highly sensitive PSMA probe for NIR-II imaging and intraoperative tumor resection. J Med Chem. 2021;64(11):7735–45.

    Article  CAS  PubMed  Google Scholar 

  32. Qu Q, Zhang Z, Guo X, et al. Novel multifunctional NIR-II aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor. J Nanobiotechnol. 2022;20(1):143.

    Article  CAS  Google Scholar 

  33. Chen Y, Xue L, Zhu Q, et al. Recent advances in second near-infrared region (nir-ii) fluorophores and biomedical applications. Front Chem. 2021;9:750404.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Antaris AL, Chen H, Diao S, et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun. 2017;8:15269.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Carr JA, Franke D, Caram JR, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA. 2018;115(17):4465–70.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4(3):259–71.

    Article  PubMed  Google Scholar 

  37. Hüttenberger D, Gabrecht T, Wagnières G, et al. Autofluorescence detection of tumors in the human lung–spectroscopical measurements in situ, in an in vivo model and in vitro. Photodiagnos Photodyn Ther. 2008;5(2):139–47.

    Article  Google Scholar 

  38. Wan H, Yue J, Zhu S, et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun. 2018;9(1):1171.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  39. Cao J, Zhu B, Zheng K, et al. Recent progress in NIR-II contrast agent for biological imaging. Front Bioeng Biotechnol. 2019;7:487.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was funded by National Natural Science Foundation of China (82003316, 92059203, 92059207, 62027901, 81930053, 81227901), CAS Youth Interdisciplinary Team (JCTD-2021-08), and Fundamental Research Funds for the Central Universities (JKF-YG-22-B005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Yang MD, Zhenhua Hu PhD or Jian Zhou MD.

Ethics declarations

Disclosures

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 924 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, J., Li, C., Yang, F. et al. Comparative Study of Indocyanine Green Fluorescence Imaging in Lung Cancer with Near-Infrared-I/II Windows. Ann Surg Oncol 31, 2451–2460 (2024). https://doi.org/10.1245/s10434-023-14677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-14677-9

Keywords

Navigation