Skip to main content

Advertisement

Log in

Pre- and Post-treatment Double-Sequential-Point Dynamic Radiomic Model in the Response Prediction of Gastric Cancer to Neoadjuvant Chemotherapy: 3-Year Survival Analysis

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Prognosis prediction of patients with gastric cancer after neoadjuvant chemotherapy is suboptimal. This study aims to develop and validate a dynamic radiomic model for prognosis prediction of patients with gastric cancer on the basis of baseline and posttreatment features.

Patients and methods

This single-center cohort study included patients with gastric adenocarcinoma treated with neoadjuvant chemotherapy from June 2009 to July 2015 in the Gastrointestinal Cancer Center of Peking University Cancer Hospital. Their clinicopathological data, pre-treatment and post-treatment computed tomography (CT) images, and pathological reports were retrieved and analyzed. Four prediction models were developed and validated using tenfold cross-validation, with death within 3 years as the outcome. Model discrimination was compared by the area under the curve (AUC). The final radiomic model was evaluated for calibration and clinical utility using Hosmer–Lemeshow tests and decision curve analysis.

Results

The study included 205 patients with gastric adenocarcinoma [166 (81%) male; mean age 59.9 (SD 10.3) years], with 71 (34.6%) deaths occurring within 3 years. The radiomic model alone demonstrated better discrimination than the pathological T stage (ypT) stage model alone (cross-validated AUC 0.598 versus 0.516, P = 0.009). The final radiomic model, which incorporated both radiomic and clinicopathological characteristics, had a significantly higher cross-validated AUC (0.769) than the ypT stage model (0.516), the radiomics alone model (0.598), and the ypT plus other clinicopathological characteristics model (0.738; all P < 0.05). Decision curve analysis confirmed the clinical utility of the final radiomic model.

Conclusions

The developed radiomic model had good accuracy and could be used as a decision aid tool in clinical practice to differentiate prognosis of patients with gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.

    Article  PubMed  Google Scholar 

  2. What is Quality of Care and why is it important? [Available from: http://www.who.int/maternal_child_adolescent/topics/quality-of-care/definition/en/.

  3. Jaffer A. Ajani M, Thomas A. D'Amico, MD, David J. Bentrem, MD, et al. NCCN Guidelines Version 4.2021. 2021.

  4. Grimaldi S, Terroir M, Caramella C. Advances in oncological treatment: limitations of RECIST 1.1 criteria. Q J Nucl Med Mol Imaging 2018;62(2):129–39.

  5. Blackham AU, Greenleaf E, Yamamoto M, Hollenbeak C, Gusani N, Coppola D, et al. Tumor regression grade in gastric cancer: predictors and impact on outcome. J Surg Oncol. 2016;114(4):434–9.

    Article  CAS  PubMed  Google Scholar 

  6. Tschandl P, Codella N, Akay BN, Argenziano G, Braun RP, Cabo H, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 2019;20(7):938–47.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dong D, Tang L, Li ZY, Fang MJ, Gao JB, Shan XH, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann Oncol Off J Eur Soc Med Oncol. 2019;30(3):431–8.

    Article  CAS  Google Scholar 

  8. Wang W, Peng Y, Feng X, Zhao Y, Seeruttun SR, Zhang J, et al. Development and validation of a computed tomography-based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer. JAMA Netw Open. 2021;4(8):e2121143.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Wei K, Liu D, Xiang J, Wang G, Meng X, et al. A machine learning model for predicting a major response to neoadjuvant chemotherapy in advanced gastric cancer. Front Oncol. 2021;11:675458.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Becker K, Langer R, Reim D, Novotny A, Meyer zum Buschenfelde C, Engel J, et al. Significance of histopathological tumor regression after neoadjuvant chemotherapy in gastric adenocarcinomas: a summary of 480 cases. Ann Surg. 2011;253(5):934–9.

  11. Ott K, Blank S, Becker K, Langer R, Weichert W, Roth W, et al. Factors predicting prognosis and recurrence in patients with esophago-gastric adenocarcinoma and histopathological response with less than 10% residual tumor. Langenbeck’s Arch Surg. 2013;398(2):239–49.

    Article  Google Scholar 

  12. In H, Solsky I, Palis B, Langdon-Embry M, Ajani J, Sano T. Validation of the 8th edition of the AJCC TNM staging system for gastric cancer using the national cancer database. Ann Surg Oncol. 2017;24(12):3683–91.

  13. Li Z, Wang Y, Shan F, Ying X, Wu Z, Xue K, et al. ypTNM staging after neoadjuvant chemotherapy in the Chinese gastric cancer population: an evaluation on the prognostic value of the AJCC eighth edition cancer staging system. Gastric Cancer. 2018;21(6):977–87.

  14. Jiang Y, Chen C, Xie J, Wang W, Zha X, Lv W, et al. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine. 2018;36:171–82.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xu Q, Sun Z, Li X, Ye C, Zhou C, Zhang L, et al. Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy. Eur Radiol. 2021;31(11):8765–74.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer (Oxford, England: 1990). 2009;45(2):228–47.

  17. Xu X, Zheng G, Zhang T, Zhao Y, Zheng Z. Is pathologic tumor regression grade after neo-adjuvant chemotherapy a promising prognostic indicator for patients with locally advanced gastric cancer? A cohort study evaluating tumor regression response. Cancer Chemother Pharmacol. 2019;84(3):635–46.

    Article  PubMed  Google Scholar 

  18. Kurokawa Y, Shibata T, Sasako M, Sano T, Tsuburaya A, Iwasaki Y, et al. Validity of response assessment criteria in neoadjuvant chemotherapy for gastric cancer (JCOG0507-A). Gastric Cancer. 2014;17(3):514–21.

    Article  CAS  PubMed  Google Scholar 

  19. Seevaratnam R, Cardoso R, McGregor C, Lourenco L, Mahar A, Sutradhar R, et al. How useful is preoperative imaging for tumor, node, metastasis (TNM) staging of gastric cancer? A Meta Anal Gastric Cancer. 2012;15(Suppl 1):S3–18.

    Article  Google Scholar 

  20. Bando E, Makuuchi R, Irino T, Tanizawa Y, Kawamura T, Terashima M. Validation of the prognostic impact of the new tumor-node-metastasis clinical staging in patients with gastric cancer. Gastric Cancer. 2019;22(1):123–9.

    Article  PubMed  Google Scholar 

  21. Cardoso R, Coburn N, Seevaratnam R, Sutradhar R, Lourenco LG, Mahar A, et al. A systematic review and meta-analysis of the utility of EUS for preoperative staging for gastric cancer. Gastric Cancer. 2012;15(Suppl 1):S19–26.

    Article  PubMed  Google Scholar 

  22. Chai R, Ma H, Xu M, Arefan D, Cui X, Liu Y, et al. Differentiating axillary lymph node metastasis in invasive breast cancer patients: a comparison of radiomic signatures from multiparametric breast MR sequences. J Magn Reson Imaging. 2019;50(4):1125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kan Y, Dong D, Zhang Y, Jiang W, Zhao N, Han L, et al. Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer. J Magn Reson Imaging. 2019;49(1):304–10.

    Article  PubMed  Google Scholar 

  24. Li C, Zhang S, Zhang H, Pang L, Lam K, Hui C, et al. Using the K-nearest neighbor algorithm for the classification of lymph node metastasis in gastric cancer. Comput Math Methods Med. 2012;2012:876545.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (31870805), Beijing Municipal Health Commission (DFL20181103), Beijing Natural Science Foundation (no. Z180001), PKU-Baidu Fund (no. 2020BD027), and Beijing Nova Program (20220484111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziyu Li MD or Jiafu Ji MD, PhD, DrPH.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yinkui Wang, Lei Tang, Xiangji Ying and Jiazheng Li are shared first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4097 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tang, L., Ying, X. et al. Pre- and Post-treatment Double-Sequential-Point Dynamic Radiomic Model in the Response Prediction of Gastric Cancer to Neoadjuvant Chemotherapy: 3-Year Survival Analysis. Ann Surg Oncol 31, 774–782 (2024). https://doi.org/10.1245/s10434-023-14478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-14478-0

Keywords

Navigation