Skip to main content

Advertisement

Log in

Immune Evasion of Hepatoma Cancer Stem-Like Cells from Natural Killer Cells

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Poor prognosis in liver cancer is due to its high frequency of intrahepatic metastasis. Cancer stem-like cells (CSLCs), which possess the properties of stemness, tumor initiation capability, and resistance to therapy, also exhibit metastatic potential. Immune surveillance plays an important role in the accomplishment of metastasis. Herein, the property of immune evasion in CSLCs was investigated.

Methods

Sphere cells were induced as CSLCs using a sphere induction medium containing neural survival factor-1. The expression of genes involved in immune evasion was determined using RNA-sequencing for sphere and parental cells followed by validation using flow cytometric analysis and ELISA. Susceptibility to natural killer (NK) cell-mediated cytotoxicity was examined by a chromium release assay. A xenograft model using BALB/c nu/nu mice was used to assess tumor growth. Gene set enrichment analysis was performed for interpreting RNA sequencing.

Results

The cell surface expressions of PD-L1, PD-L2, and CEACAM1 were upregulated and those of ULBP1 and MICA/MICB were downregulated in SK-sphere, CSLCs derived from SK-HEP-1, compared with that in parental cells. Levels of soluble MICA were elevated in conditioned medium from SK-sphere. Expression of HLA class I was not downregulated in SK-sphere. The susceptibilities to NK cell-mediated killing and secreted perforin were significantly lower in both CSLCs derived from SK-HEP-1 and HLE than in parental cells. Tumors formed upon inoculation of SK-sphere in immunodeficient mice harboring NK cells were larger than those formed upon inoculation of parental cells.

Conclusion

Human hepatoma cell line-derived CSLCs may possess immune evasion properties, especially from NK cell-mediated immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.

    Article  PubMed  Google Scholar 

  3. Rahbari NN, Mehrabi A, Mollberg NM, et al. Hepatocellular carcinoma: current management and perspectives for the future. Ann Surg. 2011;253:453–69.

    Article  PubMed  Google Scholar 

  4. Sakamoto K, Nagano H. Surgical treatment for advanced hepatocellular carcinoma with portal vein tumor thrombus. Hepatol Res. 2017;47:957–62.

    Article  CAS  PubMed  Google Scholar 

  5. Ban D, Ogura T, Akahoshi K, Tanabe M. Current topics in the surgical treatments for hepatocellular carcinoma. Ann Gastroenterol Surg. 2018;2:137–46.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tabrizian P, Jibara G, Shrager B, Schwartz M, Roayaie S. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg. 2015;261:947–55.

    Article  PubMed  Google Scholar 

  7. Kokudo N, Takemura N, Hasegawa K, et al. Clinical practice guidelines for hepatocellular carcinoma: the Japan Society of Hepatology 2017 (4th JSH-HCC guidelines) 2019 update. Hepatol Res. 2019;49:1109–13.

    Article  PubMed  Google Scholar 

  8. Bridgewater J, Galle PR, Khan SA, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60:1268–89.

    Article  PubMed  Google Scholar 

  9. Yamashita YI, Shirabe K, Beppu T, et al. Surgical management of recurrent intrahepatic cholangiocarcinoma: predictors, adjuvant chemotherapy, and surgical therapy for recurrence: a multi-institutional study by the Kyushu study group of liver surgery. Ann Gastroenterol Surg. 2017;1:136–42.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16:7–19.

    Article  CAS  PubMed  Google Scholar 

  12. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10:717–28.

    Article  CAS  PubMed  Google Scholar 

  13. Fang X, Cai Y, Liu J, et al. Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene. 2011;30:4707–20.

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto N, Tsunedomi R, Yoshimura K, Watanabe Y, Hazama S, Oka M. Cancer stem-like sphere cells induced from de-differentiated hepatocellular carcinoma-derived cell lines possess the resistance to anti-cancer drugs. BMC Cancer. 2014;14:722.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Watanabe Y, Yoshimura K, Yoshikawa K, et al. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population. Int J Oncol. 2014;45:1857–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujiwara Y, Tsunedomi R, Yoshimura K, et al. Pancreatic cancer stem-like cells with high calreticulin expression associated with immune surveillance. Pancreas. 2021;50:405–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishiyama M, Tsunedomi R, Yoshimura K, et al. Metastatic ability and the epithelial-mesenchymal transition in induced cancer stem-like hepatoma cells. Cancer Sci. 2018;109:1101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer. 2017;16:4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schatton T, Frank MH. Antitumor immunity and cancer stem cells. Ann N Y Acad Sci. 2009;1176:154–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsu JM, Xia W, Hsu YH, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Morrison BJ, Steel JC, Morris JC. Reduction of MHC-I expression limits T-lymphocyte-mediated killing of cancer-initiating cells. BMC Cancer. 2018;18:469.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miao Y, Yang H, Levorse J, et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell. 2019;177:1172-86.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang B, Wang Q, Wang Z, et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res. 2014;74:5746–57.

    Article  CAS  PubMed  Google Scholar 

  24. Ames E, Canter RJ, Grossenbacher SK, et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol. 2015;195:4010–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tsuchiya H, Shiota G. Immune evasion by cancer stem cells. Regen Ther. 2021;17:20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang T, Liu J, Shen L, et al. STAR: an integrated solution to management and visualization of sequencing data. Bioinformatics. 2013;29:3204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.

    Article  CAS  Google Scholar 

  28. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun J, Nishiyama T, Shimizu K, Kadota K. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinform. 2013;14:219.

    Article  Google Scholar 

  30. Tang M, Sun J, Shimizu K, Kadota K. Evaluation of methods for differential expression analysis on multi-group RNA-seq count data. BMC Bioinformatics. 2015;16:361.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  32. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Waldhauer I, Goehlsdorf D, Gieseke F, et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 2008;68:6368–76.

    Article  CAS  PubMed  Google Scholar 

  35. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002;99:12293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee Y, Shin JH, Longmire M, et al. CD44+ cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res. 2016;22:3571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang YH, Zhu C, Kondo Y, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 2015;517:386–90.

    Article  CAS  PubMed  Google Scholar 

  38. Hsu J, Hodgins JJ, Marathe M, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128:4654–68.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44:989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koh J, Lee SB, Park H, Lee HJ, Cho NH, Kim J. Susceptibility of CD24(+) ovarian cancer cells to anti-cancer drugs and natural killer cells. Biochem Biophys Res Commun. 2012;427:373–8.

    Article  CAS  PubMed  Google Scholar 

  41. Tallerico R, Todaro M, Di Franco S, et al. Human NK cells selective targeting of colon cancer-initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. J Immunol. 2013;190:2381–90.

    Article  CAS  PubMed  Google Scholar 

  42. Wolpert F, Roth P, Lamszus K, Tabatabai G, Weller M, Eisele G. HLA-E contributes to an immune-inhibitory phenotype of glioblastoma stem-like cells. J Neuroimmunol. 2012;250:27–34.

    Article  CAS  PubMed  Google Scholar 

  43. Chitadze G, Bhat J, Lettau M, Janssen O, Kabelitz D. Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol. 2013;78:120–9.

    Article  CAS  PubMed  Google Scholar 

  44. de Koning PJ, Kummer JA, de Poot SA, et al. Intracellular serine protease inhibitor SERPINB4 inhibits granzyme M-induced cell death. PLoS One. 2011;6:e22645.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bird CH, Sutton VR, Sun J, et al. Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol Cell Biol. 1998;18:6387–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akhter MZ, Sharawat SK, Kumar V, et al. Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM(+)CD45(+) phenotype. Oncogene. 2018;37:2089–103.

    Article  CAS  PubMed  Google Scholar 

  47. Ferrari de Andrade L, Tay RE, Pan D, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 2018;359:1537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsunedomi R, Yoshimura K, Kimura Y, et al. Elevated expression of RAB3B plays important roles in chemoresistance and metastatic potential of hepatoma cells. BMC Cancer. 2022;22:260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ostrowski M, Carmo NB, Krumeich S, et al. RAB27A and RAB27B control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.

    Article  CAS  PubMed  Google Scholar 

  50. López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell. 2017;32:135–54.

    Article  PubMed  Google Scholar 

  51. Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology. 1998;27:407–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partly supported by JSPS KAKENHI grant numbers 19K09218 and 16K10574. We are grateful to Syuiti Sakaguti (Science Research Center, Yamaguchi University) for supporting us with the radioisotope experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryouichi Tsunedomi PhD.

Ethics declarations

Disclosure

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, Y., Tsunedomi, R., Yoshimura, K. et al. Immune Evasion of Hepatoma Cancer Stem-Like Cells from Natural Killer Cells. Ann Surg Oncol 29, 7423–7433 (2022). https://doi.org/10.1245/s10434-022-12220-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-12220-w

Navigation