Skip to main content

Early Identification of Residual Disease After Neuroendocrine Tumor Resection Using a Liquid Biopsy Multigenomic mRNA Signature (NETest)



Surgery is the only cure for neuroendocrine tumors (NETs), with R0 resection being critical for successful tumor removal. Early detection of residual disease is key for optimal management, but both imaging and current biomarkers are ineffective post-surgery. NETest, a multigene blood biomarker, identifies NETs with >90% accuracy. We hypothesized that surgery would decrease NETest levels and that elevated scores post-surgery would predict recurrence.


This was a multicenter evaluation of surgically treated primary NETs (n = 153). Blood sampling was performed at day 0 and postoperative day (POD) 30. Follow-up included computed tomography/magnetic resonance imaging (CT/MRI), and messenger RNA (mRNA) quantification was performed by polymerase chain reaction (PCR; NETest score: 0–100; normal ≤20). Statistical analyses were performed using the Mann–Whitney U-test, Chi-square test, Kaplan–Meier survival, and area under the receiver operating characteristic curve (AUROC), as appropriate. Data are presented as mean ± standard deviation.


The NET cohort (n = 153) included 57 patients with pancreatic cancer, 62 patients with small bowel cancer, 27 patients with lung cancer, 4 patients with duodenal cancer, and 3 patients with gastric cancer, while the surgical cohort comprised patients with R0 (n = 102) and R1 and R2 (n = 51) resection. The mean follow-up time was 14 months (range 3–68). The NETest was positive in 153/153 (100%) samples preoperatively (mean levels of 68 ± 28). In the R0 cohort, POD30 levels decreased from 62 ± 28 to 22 ± 20 (p < 0.0001), but remained elevated in 30% (31/102) of patients: 28% lung, 29% pancreas, 27% small bowel, and 33% gastric. By 18 months, 25/31 (81%) patients with a POD30 NETest >20 had image-identifiable recurrence. An NETest score of >20 predicted recurrence with 100% sensitivity and correlated with residual disease (Chi-square 17.1, p < 0.0001). AUROC analysis identified an AUC of 0.97 (p < 0.0001) for recurrence-prediction. In the R1 (n = 29) and R2 (n = 22) cohorts, the score decreased (R1: 74 ± 28 to 45 ± 24, p = 0.0012; R2: 72 ± 24 to 60 ± 28, p = non-significant). At POD30, 100% of NETest scores were elevated despite surgery (p < 0.0001).


The preoperative NETest accurately identified all NETs (100%). All resections decreased NETest levels and a POD30 NETest score >20 predicted radiologically recurrent disease with 94% accuracy and 100% sensitivity. R0 resection appears to be ineffective in approximately 30% of patients. NET mRNA blood levels provide early objective genomic identification of residual disease and may facilitate management.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Cives M, Strosberg JR. Gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin. 2018;68:471–87.

    Article  PubMed  Google Scholar 

  2. Clift AK, Kidd M, Bodei L, et al. Neuroendocrine neoplasms of the small bowel and pancreas. Neuroendocrinology. 2020;110:444–76.

    CAS  Article  PubMed  Google Scholar 

  3. Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3:1335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shen C, Dasari A, Xu Y, et al. Pre-existing symptoms and healthcare utilization prior to diagnosis of neuroendocrine tumors: a seer-medicare database study. Sci Rep. 2018;8:16863.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Shen C, Chu Y, Halperin DM, et al. Carcinoid syndrome and costs of care during the first year after diagnosis of neuroendocrine tumors among elderly patients. Oncologist. 2017;22:1451–62.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Capdevila J, Bodei L, Davies P, et al. Unmet medical needs in metastatic lung and digestive neuroendocrine neoplasms. Neuroendocrinology. 2019;108:18–25.

    CAS  Article  Google Scholar 

  7. Ambrosini V, Nanni C, Fanti S. The use of gallium-68 labeled somatostatin receptors in PET/CT imaging. PET Clin. 2014;9:323–9.

    Article  Google Scholar 

  8. Marotta V, Zatelli MC, Sciammarella C, et al. Chromogranin A as circulating marker for diagnosis and management of neuroendocrine neoplasms: more flaws than fame. Endocr Relat Cancer. 2018;25:R11–29.

    CAS  Article  PubMed  Google Scholar 

  9. Hofland J, Zandee WT, de Herder WW. Role of biomarker tests for diagnosis of neuroendocrine tumours. Nat Rev Endocrinol. 2018;14:656–69.

    CAS  Article  PubMed  Google Scholar 

  10. Sansone A, Lauretta R, Vottari S, et al. Specific and non-specific biomarkers in neuroendocrine gastroenteropancreatic tumors. Cancers (Basel). 2019;11:1113.

    CAS  Article  PubMed Central  Google Scholar 

  11. Pulvirenti A, Rao D, McIntyre CA, et al. Limited role of Chromogranin A as clinical biomarker for pancreatic neuroendocrine tumors. HPB (Oxford). 2019;21:612–8. (Epub 2018 Oct 1023).

    Article  PubMed  Google Scholar 

  12. Partelli S, Mazza M, Andreasi V, et al. Management of small asymptomatic nonfunctioning pancreatic neuroendocrine tumors: Limitations to apply guidelines into real life. Surgery. 2019;166:157–63.

    Article  Google Scholar 

  13. Chan DL, Moody L, Segelov E, et al. Follow-up for resected gastroenteropancreatic neuroendocrine tumours: a practice survey of the commonwealth neuroendocrine tumour collaboration (commnets) and the north american neuroendocrine tumor society (NANETS). Neuroendocrinology. 2018;107:32–41.

    CAS  Article  Google Scholar 

  14. Oberg K, Krenning E, Sundin A, et al. A Delphic consensus assessment: imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management. Endocr Connect. 2016;5:174–87.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Partelli S, Andreasi V, Muffatti F, Schiavo Lena M, Falconi M. Circulating neuroendocrine gene transcripts (NETest): a postoperative strategy for early identification of the efficacy of radical surgery for pancreatic neuroendocrine tumors. Ann Surg Oncol. 2020;6:020–08425.

    Google Scholar 

  16. Oberg K, Modlin I, DeHerder W, et al. Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol. 2015;16(9):e435–e446.

    CAS  Article  Google Scholar 

  17. Laskaratos FM, Liu M, Malczewska A, et al. Evaluation of circulating transcript analysis (NETest) in small intestinal neuroendocrine neoplasms after surgical resection. Endocrine. 2020;69(2):430–40.

    CAS  Article  Google Scholar 

  18. Genc C, Jilesen AP, Nieveen van Dijkum E, et al. Measurement of circulating transcript levels (netest) to detect disease recurrence and improve follow-up after curative surgical resection of well-differentiated pancreatic neuroendocrine tumours. J Surg Oncol. 2018;118: 37-48.

  19. van Treijen MJC, van der Zee D, Heeres BC, et al. Blood Molecular Genomic analysis predicts the disease course of GEP NET patients: a validation study of the predictive value of the NETest®. Neuroendocrinology. 2020.

  20. Filosso PL, Oberg K, Malczewska A, et al. Molecular identification of bronchopulmonary neuroendocrine tumours and neuroendocrine genotype in lung neoplasia using the NETest liquid biopsy. Eur J Cardiothorac Surg. 2020;57(6):1195–202.

    Article  Google Scholar 

  21. van Treijen MJC, Korse CM, van Leeuwaarde RS, et al. Blood transcript profiling for the detection of neuroendocrine tumors: results of a large independent validation study. Front Endocrinol (Lausanne). 2018;9:740.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oberg K, Califano A, Strosberg JR, et al. A meta-analysis of the accuracy of a neuroendocrine tumor mRNA genomic biomarker (NETest) in blood. Ann Oncol. 2020;31:202–12.

    CAS  Article  PubMed  Google Scholar 

  23. Pavel M, Jann H, Prasad V, Drozdov I, Modlin IM, Kidd M. NET blood transcript analysis defines the crossing of the clinical rubicon: when stable disease becomes progressive. Neuroendocrinology. 2017;104:170–82.

    CAS  Article  Google Scholar 

  24. Shah MH, Kulke MH, Goldner WS, et al. NCCN Guidelines: neuroendocrine and adrenal tumors, version 3.2018 - Sept 11. J Natl Compr Canc Netw. 2018:693–702.

  25. Salazar R, Wiedenmann B, Rindi G, Ruszniewski P. ENETS 2011 consensus guidelines for the management of patients with digestive neuroendocrine tumors: an update. Neuroendocrinology. 2012;95:71–3.

    CAS  Article  PubMed  Google Scholar 

  26. Filosso P, Kidd M, Roffinella M, et al. The utility of blood neuroendocrine gene transcript measurement in the diagnosis of bronchopulmonary neuroendocrine tumors (BPNET) and as a tool to evaluate surgical resection and disease progression. Eur J Cardiothorac Surg. 2018;53:631–9.

    Article  Google Scholar 

  27. Kidd M, Drozdov IA, Matar S, et al. Utility of a ready-to-use PCR system for neuroendocrine tumor diagnosis. PLoS One. 2019;14:e0218592.

    CAS  Article  Google Scholar 

  28. Maurizi G, Ibrahim M, Andreetti C, et al. Long-term results after resection of bronchial carcinoid tumour: evaluation of survival and prognostic factors. Interact Cardiovasc Thorac Surg. 2014;19:239–44.

    Article  Google Scholar 

  29. Zhang XF, Wu Z, Cloyd J, et al. Margin status and long-term prognosis of primary pancreatic neuroendocrine tumor after curative resection: Results from the US Neuroendocrine Tumor Study Group. Surgery. 2019;165:548–56.

    Article  Google Scholar 

  30. Lamarca A, Clouston H, Barriuso J, et al. Follow-up recommendations after curative resection of well-differentiated neuroendocrine tumours: review of current evidence and clinical practice. J Clin Med. 2019;8(10):1630.

    Article  Google Scholar 

  31. Pavel M, Öberg K, Falconi M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31:844–60.

    CAS  Article  PubMed  Google Scholar 

  32. Grobmyer SR, Vogel SB, McGuigan JE, Copeland EM, Hochwald SN. Reoperative surgery in sporadic Zollinger-Ellison Syndrome: longterm results. J Am Coll Surg. 2009;208: 718-722; discussion 722-714.

  33. Malczewska A, Bodei L, Kidd M, Modlin IM. Blood mRNA measurement (NETest) for neuroendocrine tumor diagnosis of image-negative liver metastatic disease. J Clin Endocrinol Metab. 2019;104:867–72.

    Article  PubMed  Google Scholar 

  34. Malczewska A, Witkowska M, Wojcik-Giertuga M, et al. Prospective Evaluation of the NETest as a liquid biopsy for Gastroenteropancreatic and Bronchopulmonary Neuroendocrine Tumours: An ENETS Centre of Excellence Experience. Neuroendocrinology. 2021;111(4):304–19.

  35. Sausen M, Phallen J, Adleff V, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015;6:7686.

    Article  Google Scholar 

  36. Kidd M, Modlin I, Bodei L, Drozdov I. Decoding the molecular and mutational ambiguities of gastroenteropancreatic neuroendocrine neoplasm pathobiology. Cell Mol Gastroenterol Hepatol. 2015;1:131–53.

    Article  Google Scholar 

  37. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Article  PubMed  Google Scholar 

  38. Liu E, Paulson S, Gulati A, et al. Assessment of NETest Clinical utility in a US Registry-based study. The Oncologist. 2019;24:783–90.

    Article  Google Scholar 

  39. Modlin IM, Frilling A, Salem RR, et al. Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies. Surgery. 2016;159:336–47.

    Article  PubMed  Google Scholar 

  40. Goretzki PE, Mogl MT, Akca A, Pratschke J. Curative and palliative surgery in patients with neuroendocrine tumors of the gastro-entero-pancreatic (GEP) tract. Rev Endocr Metab Disord. 2018;19:169–78.

    Article  Google Scholar 

  41. Bodei L, Schöder H, Baum RP, et al. Molecular profiling of neuroendocrine tumours to predict response and toxicity to peptide receptor radionuclide therapy. Lancet Oncol. 2020;21:e431–43.

    CAS  Article  Google Scholar 

  42. Bodei L, Kidd MS, Singh A, et al. PRRT Genomic Signature in Blood for Prediction of 177Lu-octreotate Efficacy. Eur J Nucl Med Mol Imaging. 2018;45:1155–69.

    CAS  Article  Google Scholar 

  43. Modlin IM, Kidd M, Malczewska A, et al. The NETest: the clinical utility of multigene blood analysis in the diagnosis and management of neuroendocrine tumors. Endocrinol Metab Clin North Am. 2018;47:485–504.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kidd M, Kitz A, Drozdov I, Modlin I. Neuroendocrine tumor omic gene cluster analysis amplifies the prognostic accuracy of the NETest. Neuroendocrinology. 2020.

  45. Strosberg J, Casciano R, Stern L, et al. United States-based practice patterns and resource utilization in advanced neuroendocrine tumor treatment. World J Gastroenterol. 2013;19:2348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Modlin IM, Aslanian H, Bodei L, Drozdov I, Kidd M. A PCR blood test outperforms chromogranin A in carcinoid detection and is unaffected by PPIs. Endocr Connect. 2014;3(4):215–23.

    Article  Google Scholar 

  47. Partelli S, Falconi M. ASO Author Reflections: Circulating Neuroendocrine Gene Transcripts (NETest): A Promising Biomarker for Pancreatic Neuroendocrine Tumours (PanNET). Ann Surg Oncol. 2020;27:3937–8.

    Article  Google Scholar 

Download references




Wren Laboratories provided sample analysis at no cost.

Author information

Authors and Affiliations



All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Irvin M. Modlin MD, PhD, DSc, FRCS.

Ethics declarations


Irvin M. Modlin and Ignat A. Drozdov are consultants for Wren Laboratories. Mark Kidd and Alexandra Kitz are employees of Wren Laboratories. Kjell Oberg is a consultant and has an advisory role for Advanced Accelerator Applications. Massimo Falconi has received research grants and has an advisory role for Johnson & Johnson, Novartis, Ipsen, AAA, Mylan, and Celgen. Lisa Bodei is a consultant and has an advisory role for AAA and Ipsen. Pier Luigi Filosso, Andrea Frilling, Anna Malczewska, Ronald Salem, Christos Toumpanakis, Faidon-Marios Laskaratos, Stefano Partelli, Matteo Roffinella, Claudia von Arx, and Beata Kos Kudla have no disclosures to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Modlin, I.M., Kidd, M., Oberg, K. et al. Early Identification of Residual Disease After Neuroendocrine Tumor Resection Using a Liquid Biopsy Multigenomic mRNA Signature (NETest). Ann Surg Oncol 28, 7506–7517 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: