Molecular Biological Features of Nottingham Histological Grade 3 Breast Cancers



Cancer biology dominates the behavior and prognosis of a tumor. Although Nottingham histological grade is a subjective pathological determination, it has been accepted as a surrogate model for cancer biology. As such, histologic grade was incorporated into the latest 8th edition of the American Joint Committee on Cancer breast cancer staging system. In this study, we hypothesized that grade 3 breast cancers demonstrate aggressive molecular biological profiles, reflecting worse biology and possible underlying immunogenicity.


Transcriptomic and clinical data were obtained from the Molecular Taxonomy of Breast Cancer International Consortium, and the findings were validated by The Cancer Genome Atlas breast cancer cohort and GSE25066.


Overall, 2876 patients were analyzed in this study. Grade 3 tumors were more common in estrogen receptor (ER)-negative, advanced-stage patients, and were associated with human epidermal growth factor receptor 2 and basal subtypes by the PAM50 classifier, as well as with increased MKI67 expression (all p <0.001). Disease-free survival was significantly worse in grade 3 tumors (all cohorts). Gene set enrichment analysis demonstrated that grade 3 tumors were significantly enriched with not only cell proliferation and cell cycle-related gene sets but also immune activity-related gene sets. CIBERSORT confirmed that grade 3 tumors were infiltrated with macrophage M1, follicular helper T cells, and activated natural killer cells (all p <0.001). Furthermore, grade 3 tumors were associated with more diverse T cell receptors (p =0.001) and increased cytolytic activity (p <0.001). Lastly, major T-cell exhaustion markers were significantly elevated in grade 3 breast cancers (p <0.001).


Grade 3 breast cancers demonstrated aggressive transcriptomic features with enhanced immunogenicity and elevated T-cell exhaustion markers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Cady B. Basic principles in surgical oncology. Arch Surg. 1997;132(4):338–46.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Guillou L, Coindre JM, Bonichon F, Nguyen BB, Terrier P, Collin F, et al. Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J Clin Oncol. 1997;15(1):350–62.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Rakha EA, El-Sayed ME, Lee AH, Elston CW, Grainge MJ, Hodi Z, et al. Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J Clin Oncol. 2008;26(19):3153–8.

    PubMed  Article  Google Scholar 

  4. 4.

    Chon HJ, Hyung WJ, Kim C, Park S, Kim JH, Park CH, et al. Differential prognostic implications of gastric signet ring cell carcinoma: stage adjusted analysis from a single high-volume center in Asia. Ann Surg. 2017;265(5):946–53.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Galea MH, Blamey RW, Elston CE, Ellis IO. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat. 1992;22(3):207–19.

    CAS  Article  Google Scholar 

  6. 6.

    Bloom HJ, Richardson WW. Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Brit J Cancer. 1957;11(3):359–77.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–10.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Dalton LW, Page DL, Dupont WD. Histologic grading of breast carcinoma. A reproducibility study. Cancer. 1994;73(11):2765–70.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Rakha EA, El-Sayed ME, Menon S, Green AR, Lee AH, Ellis IO. Histologic grading is an independent prognostic factor in invasive lobular carcinoma of the breast. Breast Cancer Res Treat. 2008;111(1):121–7.

    PubMed  Article  Google Scholar 

  10. 10.

    Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC cancer staging manual: breast cancer. Ann Surg Oncol. 2018;25(7):1783–5.

    PubMed  Article  Google Scholar 

  11. 11.

    Lips EH, Mulder L, de Ronde JJ, Mandjes IA, Koolen BB, Wessels LF, et al. Breast cancer subtyping by immunohistochemistry and histological grade outperforms breast cancer intrinsic subtypes in predicting neoadjuvant chemotherapy response. Breast Cancer Res Treat. 2013;140(1):63–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Gass P, Lux MP, Rauh C, Hein A, Bani MR, Fiessler C, et al. Prediction of pathological complete response and prognosis in patients with neoadjuvant treatment for triple-negative breast cancer. BMC Cancer. 2018;18(1):1051.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol. 2015;1(4):448–54.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Hwang HW, Jung H, Hyeon J, Park YH, Ahn JS, Im YH, et al. A nomogram to predict pathologic complete response (pCR) and the value of tumor-infiltrating lymphocytes (TILs) for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. Breast Cancer Res Treat. 2019;173(2):255–66.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    PubMed  Article  Google Scholar 

  17. 17.

    Frkovic-Grazio S, Bracko M. Long term prognostic value of Nottingham histological grade and its components in early (pT1N0M0) breast carcinoma. J Clin Pathol. 2002;55(2):88–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Kawaguchi T, Narayanan S, Takabe K. ASO author reflections: “From computer to bedside”: a new translational approach to immunogenomics. Ann Surg Oncol. 2018;25(Suppl 3):846–7.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  Google Scholar 

  21. 21.

    Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173(2):400–16.e11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Katsuta E, Qi Q, Peng X, Hochwald SN, Yan L, Takabe K. Pancreatic adenocarcinomas with mature blood vessels have better overall survival. Sci Rep. 2019;9(1):1310.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Terakawa T, Katsuta E, Yan L, Turaga N, McDonald KA, Fujisawa M, et al. High expression of SLCO2B1 is associated with prostate cancer recurrence after radical prostatectomy. Oncotarget. 2018;9(18):14207–18.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Okano M, Oshi M, Butash AL, Asaoka M, Katsuta E, Peng X, et al. Estrogen receptor positive breast cancer with high expression of androgen receptor has less cytolytic activity and worse response to neoadjuvant chemotherapy but better survival. Int J Mol Sci. 2019;20(11):2655.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  25. 25.

    Hoki T, Katsuta E, Yan L, Takabe K, Ito F. Low DMT1 expression associates with increased oxidative phosphorylation and early recurrence in hepatocellular carcinoma. J Surg Res. 2019;234:343–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    McDonald KA, Kawaguchi T, Qi Q, Peng X, Asaoka M, Young J, et al. Tumor heterogeneity correlates with less immune response and worse survival in breast cancer patients. Ann Surg Oncol. 2019;26(7):2191–9.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Sporn JC, Katsuta E, Yan L, Takabe K. Expression of MicroRNA-9 is associated with overall survival in breast cancer patients. J Surg Res. 2019;233:426–35.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Kim SY, Kawaguchi T, Yan L, Young J, Qi Q, Takabe K. Clinical relevance of microRNA expressions in breast cancer validated using the cancer genome Atlas (TCGA). Ann Surg Oncol. 2017;24(10):2943–9.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Takahashi H, Katsuta E, Yan L, Dasgupta S, Takabe K. High expression of Annexin A2 is associated with DNA repair, metabolic alteration, and worse survival in pancreatic ductal adenocarcinoma. Surgery. 2019;166(2):150–6.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Gluck S, Ross JS, Royce M, McKenna EF, Jr., Perou CM, Avisar E, et al. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel–capecitabine +/− trastuzumab. Breast Cancer Res Treat. 2012;132(3):781–91.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Esserman LJ, Berry DA, Cheang MC, Yau C, Perou CM, Carey L, et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Treat. 2012;132(3):1049–62.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA. 2011;305(18):1873–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Itoh M, Iwamoto T, Matsuoka J, Nogami T, Motoki T, Shien T, et al. Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers. Breast Cancer Res Treat. 2014;143(2):403–9.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Jacobson RS, Becich MJ, Bollag RJ, Chavan G, Corrigan J, Dhir R, et al. A federated network for translational cancer research using clinical data and biospecimens. Cancer Res. 2015;75(24):5194–201.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48(4):812–30.e14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1–2):48–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Narayanan S, Kawaguchi T, Yan L, Peng X, Qi Q, Takabe K. Cytolytic activity score to assess anticancer immunity in colorectal cancer. Ann Surg Oncol. 2018;25(8):2323–31.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817-26.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.

    PubMed  Article  Google Scholar 

  42. 42.

    Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 2006;66(21):10292–301.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98(4):262–72.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Zhao X, Rodland EA, Sorlie T, Vollan HK, Russnes HG, Kristensen VN, et al. Systematic assessment of prognostic gene signatures for breast cancer shows distinct influence of time and ER status. BMC Cancer 2014;14:211.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Dunkler D, Michiels S, Schemper M. Gene expression profiling: does it add predictive accuracy to clinical characteristics in cancer prognosis? Eur J Cancer 2007;43(4):745–51.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12(4):207.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Luen S, Virassamy B, Savas P, Salgado R, Loi S. The genomic landscape of breast cancer and its interaction with host immunity. Breast. 2016;29:241–50.

    PubMed  Article  Google Scholar 

  48. 48.

    Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Schmid P CJ, Dent R, Pusztai L, McArthur H.L, Kuemmel S, Bergh J, et al. KEYNOTE-522: phase III study of pembrolizumab + chemotherapy vs placebo + chemo as neoadjuvant treatment, followed by pembrolizumab vs placebo as adjuvant treatment for early triple-negative breast cancer. Ann Oncol. 2019;30(Suppl 5):v851–934.

    Google Scholar 

Download references


This work was supported by National Institutes of Health Grant R01CA160688 and Susan G. Komen Grant CCR17481211 to KT, as well as National Cancer Institute (NCI) Grants P30CA016056 and U24CA232979, involving the use of Roswell Park Comprehensive Cancer Center’s Bioinformatics and Biostatistics Shared Resources. Additionally, this research used the TIES, which is supported by NCI Grant U24CA180921.

Author information



Corresponding author

Correspondence to Kazuaki Takabe MD, PhD, FACS.

Ethics declarations


The authors report no proprietary or commercial interest in any product mentioned, or concept discussed, in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 751 kb)

Supplementary material 2 (TIFF 1357 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Oshi, M., Asaoka, M. et al. Molecular Biological Features of Nottingham Histological Grade 3 Breast Cancers. Ann Surg Oncol 27, 4475–4485 (2020).

Download citation