Skip to main content

Advertisement

Log in

Peritumoral Lymphatic Vessels Associated with Resistance to Neoadjuvant Chemotherapy and Unfavorable Survival in Esophageal Cancer

  • Health Services Research and Global Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Peri- or intra-tumor lymphangiogenesis is induced in several types of cancer. However, the significance of peritumoral lymphatic vessels (LVs) in esophageal cancer (EC) remains to be clarified.

Methods

This study included 162 eligible EC patients with or without neoadjuvant chemotherapy (NAC). The numbers of non-tumoral and peritumoral LVs were counted in resected specimens based on podoplanin immunostaining. The association between peritumoral LV number and clinicopathologic parameters, including tumor heterogeneity as measured by positron emission tomography, NAC response, and patient survival were analyzed.

Results

In non-NAC patients, the number of peritumoral LVs was highest in the lamina propria mucosa (LPM), followed by non-tumoral LVs in the LPM, peritumoral LVs in the submucosa (SM), and non-tumoral LVs in the SM. The patients with a low number of peritumoral LVs in the LPM versus those with a high number constituted a larger fraction of the NAC patients (67.8% vs. 50.0%; P = 0.022) and had a poorer pathologic response to NAC (grades 0–1a: 68.8% vs. 47.2%; P = 0.035), as well as greater tumor heterogeneity and worse survival (5-year overall survival: 50.6% vs. 72.8%; P = 0.0097). The number of peritumoral LVs in the LPM was identified as an independent prognostic factor with the highest hazard ratio (HR) of overall survival (HR 2.06; P = 0.0049) in the multivariate analysis.

Conclusion

For EC patients, peritumoral LVs in the LPM layer are associated with tumor heterogeneity, response to NAC, and unfavorable survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tanaka T, Matono S, Mori N, Shirouzu K, Fujita H. T1 squamous cell carcinoma of the esophagus: long-term outcomes and prognostic factors after esophagectomy. Ann Surg Oncol. 2014;21:932–8. https://doi.org/10.1245/s10434-013-3372-0.

    Article  PubMed  Google Scholar 

  2. Kitagawa Y, Uno T, Oyama T, et al. Esophageal cancer practice guidelines 2017 edited by the Japan esophageal society: part 2. Esophagus. 2019;16:25–43. https://doi.org/10.1007/s10388-018-0642-8.

    Article  PubMed  Google Scholar 

  3. Ando N, Kato H, Igaki H, et al. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluorouracil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann Surg Oncol. 2012;19:68–74. https://doi.org/10.1245/s10434-011-2049-9.

    Article  PubMed  Google Scholar 

  4. Makino T, Yamasaki M, Tanaka K, et al. Metabolic tumor volume change predicts long-term survival and histological response to preoperative chemotherapy in locally advanced esophageal cancer. Ann Surg. 2019;270:1090–5. https://doi.org/10.1097/SLA.0000000000002808.

    Article  PubMed  Google Scholar 

  5. Saunders NA, Simpson F, Thompson EW, et al. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med. 2012;4:675–84. https://doi.org/10.1002/emmm.201101131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tatsumi M, Isohashi K, Matsunaga K, et al. Volumetric and texture analysis on FDG PET in evaluating and predicting treatment response and recurrence after chemotherapy in follicular lymphoma. Int J Clin Oncol. 2019;24:1292–300. https://doi.org/10.1007/s10147-019-01482-2.

    Article  PubMed  Google Scholar 

  7. Miyata H, Yamasaki M, Takahashi T, et al. Relevance of [18F]fluorodeoxyglucose positron emission tomography-positive lymph nodes after neoadjuvant chemotherapy for squamous cell oesophageal cancer. Br J Surg. 2013;100:1490–7. https://doi.org/10.1002/bjs.9253.

    Article  CAS  PubMed  Google Scholar 

  8. Nakajo M, Jinguji M, Nakabeppu Y, et al. Texture analysis of (18)F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2017;44:206–14. https://doi.org/10.1007/s00259-016-3506-2.

    Article  CAS  PubMed  Google Scholar 

  9. Orlhac F, Nioche C, Soussan M, Buvat I. Understanding changes in tumor texture indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med. 2017;58:387–92. https://doi.org/10.2967/jnumed.116.181859.

    Article  PubMed  Google Scholar 

  10. Schoppmann SF, Jesch B, Zacherl J, Riegler MF, Friedrich J, Birner P. Lymphangiogenesis and lymphovascular invasion diminishes prognosis in esophageal cancer. Surgery. 2013;153:526–34. https://doi.org/10.1016/j.surg.2012.10.007.

    Article  PubMed  Google Scholar 

  11. Imamura Y, Watanabe M, Nagai Y, et al. Lymphatic vessel invasion detected by the D2-40 monoclonal antibody is an independent prognostic factor in node-negative esophageal squamous cell carcinoma. J Surg Oncol. 2012;105:277–83. https://doi.org/10.1002/jso.22079.

    Article  CAS  PubMed  Google Scholar 

  12. Saad RS, Lindner JL, Liu Y, Silverman JF. Lymphatic vessel density as prognostic marker in esophageal adenocarcinoma. Am J Clin Pathol. 2009;131:92–8. https://doi.org/10.1309/AJCPKWUQSIPVG90H.

    Article  PubMed  Google Scholar 

  13. Tong L, Yuan S, Feng F, Zhang H. Role of podoplanin expression in esophageal squamous cell carcinoma: a retrospective study. Dis Esophagus. 2012;25:72–80. https://doi.org/10.1111/j.1442-2050.2011.01211.x.

    Article  CAS  PubMed  Google Scholar 

  14. Ma W, Wang K, Yang S, et al. Clinicopathology significance of podoplanin immunoreactivity in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7:2361–71.

    PubMed  PubMed Central  Google Scholar 

  15. Inoue A, Moriya H, Katada N, et al. Intratumoral lymphangiogenesis of esophageal squamous cell carcinoma and relationship with regulatory factors and prognosis. Pathol Int. 2008;58:611–9. https://doi.org/10.1111/j.1440-1827.2008.02279.x.

    Article  CAS  PubMed  Google Scholar 

  16. Kumagai Y, Tachikawa T, Higashi M, et al. Vascular endothelial growth factors C and D and lymphangiogenesis at the early stage of esophageal squamous cell carcinoma progression. Dis Esophagus. 2018;31. https://doi.org/10.1093/dote/doy011.

  17. Mori D, Yamasaki F, Shibaki M, Tokunaga O. Lateral peritumoral lymphatic vessel invasion can predict lymph node metastasis in esophageal squamous cell carcinoma. Mod Pathol. 2007;20:694–700. https://doi.org/10.1038/modpathol.3800786.

    Article  PubMed  Google Scholar 

  18. Lund AW, Wagner M, Fankhauser M, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389–402. https://doi.org/10.1172/JCI79434.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Leslie H, Sobin MKG, Wittekind C. TNM classification of malignant tumors. 7th ed. Wiley-Blackwell, Oxford, NJ, USA, 2010.

    Google Scholar 

  20. Yamashita K, Makino T, Yamasaki M, et al. Comparison of short-term outcomes between 2- and 3-field lymph node dissection for esophageal cancer. Dis Esophagus. 2017;30:1–8. https://doi.org/10.1093/dote/dox096.

    Article  CAS  PubMed  Google Scholar 

  21. Miyata H, Yamasaki M, Miyazaki Y, et al. Clinical importance of supraclavicular lymph node metastasis after neoadjuvant chemotherapy for esophageal squamous cell carcinoma. Ann Surg. 2015;262:280–5. https://doi.org/10.1097/sla.0000000000000933.

    Article  PubMed  Google Scholar 

  22. Makino T, Yamasaki M, Miyata H, et al. Solitary lymph node recurrence of esophageal squamous cell carcinoma: surgical failure or systemic disease? Ann Surg Oncol. 2016;23:2087–93. https://doi.org/10.1245/s10434-015-5086-y.

    Article  PubMed  Google Scholar 

  23. Colvin H, Mizushima T, Eguchi H, Takiguchi S, Doki Y, Mori M. Gastroenterological surgery in Japan: the past, the present, and the future. Ann Gastroenterol Surg. 2017;1:5–10. https://doi.org/10.1002/ags3.12008.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Urakawa S, Makino T, Yamasaki M, et al. Lymph node response to neoadjuvant chemotherapy as an independent prognostic factor in metastatic esophageal cancer. Ann Surg. 2019. https://doi.org/10.1097/SLA.0000000000003445.

    Article  PubMed  Google Scholar 

  25. Makino T, Yamasaki M, Tanaka K, et al. The impact of prophylactic administration of a neutrophil elastase inhibitor on the postoperative course in older patients undergoing esophagectomy for esophageal cancer: a propensity score-matched analysis. Esophagus. 2017;14:241–8. https://doi.org/10.1007/s10388-017-0571-y.

    Article  Google Scholar 

  26. Hagi T, Makino T, Yamasaki M, et al. Dysphagia score as a predictor of adverse events due to triplet chemotherapy and oncological outcomes in 434 consecutive patients with esophageal cancer. Ann Surg Oncol. 2019;26:4754–64. https://doi.org/10.1245/s10434-019-07744-7.

    Article  PubMed  Google Scholar 

  27. Makino T, Yamasaki M, Miyazaki Y, et al. Short- and long-term outcomes of larynx-preserving surgery for cervical esophageal cancer: analysis of 100 consecutive cases. Ann Surg Oncol. 2016;23(Suppl 5):858–65. https://doi.org/10.1245/s10434-016-5511-x.

    Article  PubMed  Google Scholar 

  28. Makino T, Yamasaki M, Miyazaki Y, et al. Utility of initial induction chemotherapy with 5-fluorouracil, cisplatin, and docetaxel (DCF) for T4 esophageal cancer: a propensity score-matched analysis. Dis Esophagus. 2018;31. https://doi.org/10.1093/dote/dox130.

  29. Diseases JSfE. Guidelines for the Clinical and Pathologic Studies on Carcinoma of the Esophagus. 11th ed. Kanehara Shuppan, Tokyo, Japan, 2015.

    Google Scholar 

  30. Hashimoto T, Makino T, Yamasaki M, et al. The pattern of residual tumor after neoadjuvant chemotherapy for locally advanced esophageal cancer and its clinical significance. Ann Surg. 2020;271:875–84. https://doi.org/10.1097/SLA.0000000000003129.

    Article  PubMed  Google Scholar 

  31. Makino T, Yamasaki M, Tanaka K, et al. Importance of positron emission tomography for assessing the response of primary and metastatic lesions to induction treatments in T4 esophageal cancer. Surgery. 2017;162:836–45. https://doi.org/10.1016/j.surg.2017.06.007.

    Article  PubMed  Google Scholar 

  32. Makino T, Miyata H, Yamasaki M, et al. Utility of response evaluation to neo-adjuvant chemotherapy by (18)F-fluorodeoxyglucose-positron emission tomography in locally advanced esophageal squamous cell carcinoma. Surgery. 2010;148:908–18. https://doi.org/10.1016/j.surg.2010.02.016.

    Article  PubMed  Google Scholar 

  33. Makino T, Doki Y, Miyata H, et al. Use of (18)F-fluorodeoxyglucose-positron emission tomography to evaluate responses to neo-adjuvant chemotherapy for primary tumor and lymph node metastasis in esophageal squamous cell carcinoma. Surgery. 2008;144:793–802. https://doi.org/10.1016/j.surg.2008.06.026.

    Article  PubMed  Google Scholar 

  34. Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22. https://doi.org/10.2967/jnumed.113.129858.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao YC, Ni XJ, Li Y, et al. Peritumoral lymphangiogenesis induced by vascular endothelial growth factor C and D promotes lymph node metastasis in breast cancer patients. World J Surg Oncol. 2012;10:165. https://doi.org/10.1186/1477-7819-10-165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Niemiec JA, Adamczyk A, Ambicka A, et al. Prognostic role of lymphatic vessel density and lymphovascular invasion in chemotherapy-naive and chemotherapy-treated patients with invasive breast cancer. Am J Transl Res. 2017;9:1435–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tixier F, Le Rest CC, Hatt M, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78. https://doi.org/10.2967/jnumed.110.082404.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Makino MD, PhD.

Ethics declarations

Disclosure

There are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplemental Figure 1

Kaplan–Meier analysis of overall survival in NAC patients (A), and non-NAC patients (B) according to number of peritumoral lymphatic vessels (LVs) in the lamina propria mucosa. (TIFF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, T., Makino, T., Yamasaki, M. et al. Peritumoral Lymphatic Vessels Associated with Resistance to Neoadjuvant Chemotherapy and Unfavorable Survival in Esophageal Cancer. Ann Surg Oncol 27, 3762–3769 (2020). https://doi.org/10.1245/s10434-020-08474-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-020-08474-x

Navigation