Skip to main content

Advertisement

Log in

DNA Repair Protein Rad51 Induces Tumor Growth and Metastasis in Esophageal Squamous Cell Carcinoma via a p38/Akt-Dependent Pathway

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Rad51 is a protein which plays a vital role in DNA double-strand break repair and maintenance of telomeres. However, the underlying mechanism for its action in esophageal squamous cell carcinoma (ESCC) remains unclear.

Patients and Methods

Eighty-seven patients with ESCC were enrolled in this study. Expression of Rad51 in ESCC was determined by immunohistochemistry and correlated with clinicopathological variables by Chi square test. The role of Rad51 in patient survival was determined by Kaplan–Meier estimates. The effects of Rad51 knockdown and overexpression on esophageal cancer growth, migration, and invasion were examined using TE8, CE81T, and KYSE70 cells. The mechanisms involved were also analyzed. Nude mice models were used for assessment of tumor growth.

Results

Rad51 staining was predominantly observed in ESCC patients. ESCC patients with high Rad51 expression had significantly decreased survival (P < 0.001) combined with increased tumor size (P = 0.034) and lymph node metastasis (P = 0.039). Rad51 overexpression promoted, while its knockdown attenuated, esophageal cancer cell viability through cell cycle entry and migration/invasion via epithelial–mesenchymal transition. Moreover, Rad51 overexpression increased colony formation in vitro and tumor growth in vivo. In addition, high Rad51 expression increased cancer progression through the p38/Akt/Snail signaling pathway.

Conclusions

This study indicates a new biological role for Rad51 in ESCC progression. Rad51 may serve as a potential prognostic biomarker and therapeutic target for ESCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.

    Article  Google Scholar 

  2. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet. 2013;381:400–12.

    Article  Google Scholar 

  3. Liang H, Fan JH, Qiao YL. Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China. Cancer Biol Med. 2017;14:33–41.

    Article  PubMed  Google Scholar 

  4. Sakaeda T, Yamamori M, Kuwahara A, Nishiguchi K. Pharmacokinetics and pharmacogenomics in esophageal cancer chemoradiotherapy. Adv Drug Deliv Rev. 2009;61:388–401.

    Article  CAS  Google Scholar 

  5. Hartlerode AJ, Scully R. Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J. 2009;423:157–68.

    Article  CAS  PubMed  Google Scholar 

  6. Nagaria P, Robert C, Rassool FV. DNA double-strand break response in stem cells: mechanisms to maintain genomic integrity. Biochim Biophys Acta. 2013;1830:2345–53.

    Article  CAS  Google Scholar 

  7. Powell SN, Bindra RS. Targeting the DNA damage response for cancer therapy. DNA Repair (Amst). 2009;8:1153–65.

    Article  CAS  Google Scholar 

  8. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47:497–510.

    Article  CAS  Google Scholar 

  9. Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res. 2012;40:5795–818.

    Article  CAS  PubMed  Google Scholar 

  10. Sugiyama T, Kantake N. Dynamic regulatory interactions of rad51, rad52, and replication protein-a in recombination intermediates. J Mol Biol. 2009;390:45–55.

    Article  CAS  PubMed  Google Scholar 

  11. Tsuzuki T, Fujii Y, Sakumi K, et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA. 1996;93:6236–40.

    Article  CAS  PubMed  Google Scholar 

  12. Henning W, Sturzbecher HW. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology. 2003;193:91–109.

    Article  CAS  PubMed  Google Scholar 

  13. Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst). 2008;7:686–93.

    Article  CAS  Google Scholar 

  14. Nagathihalli NS, Nagaraju G. RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta. 2011;1816:209–18.

    CAS  PubMed  Google Scholar 

  15. Chiu WC, Lee YC, Su YH, et al. The synthetic beta-nitrostyrene derivative CYT-Rx20 inhibits esophageal tumor growth and metastasis via PI3K/AKT and STAT3 pathways. PLoS ONE. 2016;11:e0166453.

    Article  PubMed  Google Scholar 

  16. Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192–206.

    Article  CAS  PubMed  Google Scholar 

  17. Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes Migr. 2015;9:317–24.

    Article  CAS  Google Scholar 

  18. Lee JL, Park SI, Kim SB, et al. A single institutional phase III trial of preoperative chemotherapy with hyperfractionation radiotherapy plus surgery versus surgery alone for resectable esophageal squamous cell carcinoma. Ann Oncol. 2004;15:947–54.

    Article  CAS  PubMed  Google Scholar 

  19. Burmeister BH, Smithers BM, Gebski V, et al. Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the oesophagus: a randomised controlled phase III trial. Lancet Oncol. 2005;6:659–68.

    Article  PubMed  Google Scholar 

  20. Li Y, Yu H, Luo RZ, et al. Elevated expression of Rad51 is correlated with decreased survival in resectable esophageal squamous cell carcinoma. J Surg Oncol. 2011;104:617–22.

    Article  CAS  Google Scholar 

  21. Nakanoko T, Saeki H, Morita M, et al. Rad51 expression is a useful predictive factor for the efficacy of neoadjuvant chemoradiotherapy in squamous cell carcinoma of the esophagus. Ann Surg Oncol. 2014;21:597–604.

    Article  Google Scholar 

  22. Sawyers CL. Shifting paradigms: the seeds of oncogene addiction. Nat Med. 2009;15:1158–61.

    Article  CAS  Google Scholar 

  23. Holien T, Vatsveen TK, Hella H, Waage A, Sundan A. Addiction to c-MYC in multiple myeloma. Blood. 2012;120:2450–3.

    Article  CAS  Google Scholar 

  24. Hall A, Meyle KD, Lange MK, et al. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget. 2013;4:584–99.

    Article  PubMed  Google Scholar 

  25. Demidenko ZN, An WG, Lee JT, Romanova LY, McCubrey JA, Blagosklonny MV. Kinase-addiction and bi-phasic sensitivity-resistance of Bcr-Abl- and Raf-1-expressing cells to imatinib and geldanamycin. Cancer Biol Ther. 2005;4:484–90.

    Article  CAS  Google Scholar 

  26. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773:1358–75.

    Article  CAS  Google Scholar 

  27. Igea A, Nebreda AR. The stress kinase p38alpha as a target for cancer therapy. Cancer Res. 2015;75:3997–4002.

    Article  CAS  Google Scholar 

  28. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    Article  CAS  PubMed  Google Scholar 

  29. Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438:967–74.

    Article  CAS  PubMed  Google Scholar 

  31. Aiello NM, Maddipati R, Norgard RJ, et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell. 2018;45:681–95.

    Article  CAS  PubMed  Google Scholar 

  32. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121:727–35.

    Article  CAS  PubMed  Google Scholar 

  33. Yang SX, Polley E, Lipkowitz S. New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat Rev. 2016;45:87–96.

    Article  CAS  PubMed  Google Scholar 

  34. Beck JT, Ismail A, Tolomeo C. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma. Cancer Treat Rev. 2014;40:980–9.

    Article  CAS  PubMed  Google Scholar 

  35. Toulany M, Rodemann HP. Potential of Akt mediated DNA repair in radioresistance of solid tumors overexpressing erbB-PI3K-Akt pathway. Transl Cancer Res. 2013;2:190–202.

    CAS  Google Scholar 

  36. Yu H, Bian X, Gu D, He X. Metformin synergistically enhances cisplatin-induced cytotoxicity in esophageal squamous cancer cells under glucose-deprivation conditions. Biomed Res Int. 2016;2016:8678634.

    PubMed Central  PubMed  Google Scholar 

  37. Lennon FE, Mirzapoiazova T, Mambetsariev B, et al. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer. PLoS ONE. 2014;9:e91577.

    Article  PubMed  Google Scholar 

  38. Le Scodan R, Cizeron-Clairac G, Fourme E, et al. DNA repair gene expression and risk of locoregional relapse in breast cancer patients. Int J Radiat Oncol Biol Phys. 2010;78:328–36.

    Article  PubMed  Google Scholar 

  39. Zhang N, Wu X, Yang L, et al. FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair gene Rad51. Clin Cancer Res. 2012;18:5961–71.

    Article  CAS  PubMed  Google Scholar 

  40. Kasagi Y, Morita M, Otsu H, et al. Clinicopathological characteristics of esophageal squamous cell carcinoma in patients younger than 50 years. Ann Surg Oncol. 2015;22:311–5.

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by grants from Kaohsiung Medical University Research Center Grant (Center for Cancer Research KMU-TC108A04), Kaohsiung Medical University Hospital (KMUH103-3M41, KMUH104-4M46), and the Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B) from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Yii Huang MD, PhD or Shyng-Shiou F. Yuan MD, PhD.

Ethics declarations

Disclosure

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Supplementary material 2 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, WC., Fang, PT., Lee, YC. et al. DNA Repair Protein Rad51 Induces Tumor Growth and Metastasis in Esophageal Squamous Cell Carcinoma via a p38/Akt-Dependent Pathway. Ann Surg Oncol 27, 2090–2101 (2020). https://doi.org/10.1245/s10434-019-08043-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-019-08043-x

Navigation