Slippery Nanoparticles as a Diffusion Platform for Mucin Producing Gastrointestinal Tumors

Abstract

Background

Treatment failure in pseudomyxoma peritonei (PMP) is partly attributed to the ineffective delivery of therapeutics through dense mucinous tumor barriers. We modified the surface of Poly (lactic-co-glycolic acid)-b-polyethylene glycol (PLGA-PEG-NPs) with a low-density, second PEG layer (PLGA-TPEG-NPs-20) to reduce their binding affinity to proteins and improve diffusion through mucin.

Methods

Nanoprecipitation was used to fabricate PLGA-PEG-NPs. To construct the second PEG layer of PLGA-TPEG-NPs-20, PEG-Thiol was conjugated to PLGA-PEG-NPs composed of 80% methoxy PLGA-PEG and 20% of PLGA-PEG-Maleimide. DiD-labeled nanoparticles (NPs) were added to the inner well of a trans-well system containing cultured LS174T or human PMP tissue. Diffusion of NPs was measured via fluorescence signal in the bottom well. In an ex vivo rat model, small intestine was treated with DiD-labeled NPs. In an in vivo murine LS174T subcutaneous tumor model, Nu/Nu nude mice received supratumoral injections (subcutaneous injection above the tumor) of DiD-labeled NPs. Thirty minutes after injection, mice were sacrificed, and tumors were collected. All tissue was cryosectioned, mounted with DAPI-containing media, and inspected via confocal microscopy.

Results

Diffusion profiles of NPs through PMP and cultured LS174T cells were generated. PLGA-TPEG-NPs-20 diffused faster with ~ 100% penetration versus PLGA-PEG-NPs with ~ 40% penetration after 8 h. Increased diffusion of PLGA-TPEG-NPs-20 was further observed in ex vivo rat small intestine as evidenced by elevated luminal NP fluorescence signal on the luminal surface. Subcutaneous LS174T tumors treated with PLGA-TPEG-NPs-20 demonstrated greater diffusion of NPs, showing homogenous fluorescence signal throughout the tumor.

Conclusions

PLGA-TPEG-NPs-20 can be an effective mucin penetrating drug delivery system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Kawamura H, Kondo Y, Osawa S, et al. A clinicopathologic study of mucinous adenocarcinoma of the stomach. Gastric Cancer. 2001;4(2):83–6.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Sugarbaker PH. Surgical treatment of peritoneal carcinomatosis: 1988 Du Pont lecture. Canadian J Surg. 1989;32(3):164–70.

    CAS  Google Scholar 

  3. 3.

    Chua TC, Moran BJ, Sugarbaker PH, et al. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Clin Oncol. 2012;30(20):2449–56.

    Article  Google Scholar 

  4. 4.

    Ensign LM, Tang BC, Wang YY, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Translational Med. 2012;4(138):138ra179.

    PubMed  Article  Google Scholar 

  5. 5.

    Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Delivery Rev. 2009;61(2):158–71.

    CAS  Article  Google Scholar 

  6. 6.

    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech. 2007;2(12):751–60.

    CAS  Article  Google Scholar 

  7. 7.

    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Delivery Rev. 2002;54(5):631–51.

    CAS  Article  Google Scholar 

  8. 8.

    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

    CAS  PubMed  Google Scholar 

  9. 9.

    Kratz F, Warnecke A. Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J Controlled Release. 2012;164(2):221–35.

    CAS  Article  Google Scholar 

  10. 10.

    Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Ann Rev Chem Biomolec Eng. 2011;2:281–98.

    CAS  Article  Google Scholar 

  11. 11.

    Zhou H, Fan Z, Deng J, et al. Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett. 2016;16(5):3268–77.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Tsoi KM, MacParland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15(11):1212–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Chen F, Wang G, Griffin JI, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotech. 2017;12(4):387–93.

    CAS  Article  Google Scholar 

  14. 14.

    Owens DE, 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Zhou H, Fan Z, Li PY, et al. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano. 2018;12(10):10130–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Popov AE, Bourassa J, Gardner CR, et al. Inventor; Kala Pharmaceuticals, Inc. (Waltham, MA), The Johns Hopkins University (Baltimore, MD), assignee. Nanocrystals, composition, and methods that aid particle transport in mucus. 2013.

  17. 17.

    Tang BC, Dawson M, Lai SK, et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A. 2009;106(46):19268-73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Grießinger J, Dünnhaupt S, Cattoz B, et al. Methods to determine the interactions of micro- and nanoparticles with mucus. Eur J Pharm Biopharm. 2015;96:464–76.

    PubMed  Article  Google Scholar 

  19. 19.

    Friedl H, Dunnhaupt S, Hintzen F, et al. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery systems. J Pharm Sci. 2013;102(12):4406–13.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Choudry HA, O’Malley ME, Guo ZS, Zeh HJ, Bartlett DL. Mucin as a therapeutic target in pseudomyxoma peritonei. J Surg Oncol. 2012;106(7):911–7.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4(1):45–60.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Dilly AK, Lee YJ, Zeh HJ, Guo ZS, Bartlett DL, Choudry HA. Targeting hypoxia-mediated mucin 2 production as a therapeutic strategy for mucinous tumors. Translational Res. 2016;169:19–30.e11.

    Google Scholar 

  23. 23.

    Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J Rare Dis. 2014;9:71.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Choudry HA, Mavanur A, O’Malley ME, Zeh HJ, Guo Z, Bartlett DL. Chronic anti-inflammatory drug therapy inhibits gel-forming mucin production in a murine xenograft model of human pseudomyxoma peritonei. Ann Surg Oncol. 2012;19(5):1402–9.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm. 2017;532(1):555–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Kalra AV, Campbell RB. Mucin impedes cytotoxic effect of 5-FU against growth of human pancreatic cancer cells: overcoming cellular barriers for therapeutic gain. Br J Cancer. 2007;97(7):910–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Kalra AV, Campbell RB. Mucin overexpression limits the effectiveness of 5-FU by reducing intracellular drug uptake and antineoplastic drug effects in pancreatic tumours. Eur Cancer (Oxford, Engl 1990). 2009;45(1):164–73.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Skrypek N, Duchene B, Hebbar M, Leteurtre E, van Seuningen I, Jonckheere N. The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family. Oncogene. 2013;32(13):1714–23.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Trehoux S, Duchene B, Jonckheere N, Van Seuningen I. The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42-44 MAPK, Akt, Bcl-2 and MMP13 pathways. Biochem Biophys Res Comm. 2015;456(3):757–62.

    PubMed  Article  Google Scholar 

  30. 30.

    Wissniowski TT, Meister S, Hahn EG, Kalden JR, Voll R, Ocker M. Mucin production determines sensitivity to bortezomib and gemcitabine in pancreatic cancer cells. Int J Oncol. 2012;40(5):1581–9.

    CAS  PubMed  Google Scholar 

  31. 31.

    Perry JL, Reuter KG, Kai MP, et al. PEGylated PRINT Nanoparticles: The Impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12(10):5304–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Yang M, Lai SK, Yu T, et al. Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol. J Controlled Release. 2014;192:202–8.

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work has received funding from the National Organization of Rare Disorders (NORD) (Grant number 260696) through Appendix Cancer Pseudomyxoma Peritonei (ACPMP) Research Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wilbur B. Bowne MD.

Ethics declarations

Disclosure

The authors have no commercial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalili, M., Zhou, H., Thadi, A. et al. Slippery Nanoparticles as a Diffusion Platform for Mucin Producing Gastrointestinal Tumors. Ann Surg Oncol 27, 76–84 (2020). https://doi.org/10.1245/s10434-019-07493-7

Download citation