Annals of Surgical Oncology

, Volume 26, Issue 5, pp 1284–1291 | Cite as

Early Outcomes of Robot-Assisted Versus Thoracoscopic-Assisted Ivor Lewis Esophagectomy for Esophageal Cancer: A Propensity Score-Matched Study

  • Yajie Zhang
  • Yu Han
  • Qinyi Gan
  • Jie Xiang
  • Runsen Jin
  • Kai Chen
  • Jiaming Che
  • Junbiao Hang
  • Hecheng LiEmail author
Thoracic Oncology



Both robot-assisted Ivor Lewis esophagectomy (RAILE) and conventional thoracoscopic-assisted Ivor Lewis esophagectomy (TAILE) are minimally invasive surgical techniques for the treatment of middle and distal esophageal cancer. However, no research studies comparing early outcomes between RAILE and TAILE have been reported.


A retrospective analysis was made of 184 patients, 76 in the RAILE group and 108 in the TAILE group, who underwent minimally invasive Ivor Lewis esophagectomy between December 2014 and June 2018. Propensity score-matched analysis was performed between the two groups based on demographics, comorbidities, American Society of Anesthesiologists score, tumor location, tumor size, and pathological stage. Perioperative outcomes were compared.


Two conversions to thoracotomy occurred in the RAILE group. There was no 30-day in either group. Sixty-six matched pairs were identified for each group. Within the propensity score-matched cohorts, the operative time in the RAILE group was significantly longer than that in the TAILE group (302.0 ± 62.9 vs. 274.7 ± 38.0 min, P = 0.004). There was no significant difference in the blood loss [200.0 ml (interquartile range [IQR], 100.0–262.5 ml) vs. 200.0 ml (150.0–245.0 ml), P = 0.100], rates of overall complications (28.8 vs. 24.2%, P = 0.554), length of stay [9.0 days (IQR 8.0–12.3 days) vs. 9.0 days (IQR 8.0–11.3 days), P = 0.517], the number of total dissected lymph nodes (19.2 ± 9.2 vs. 19.3 ± 9.5, P = 0.955), and detailed categories of lymph nodes.


RAILE demonstrated comparable early outcomes compared with TAILE and should be considered as an alternative minimally invasive option for treating esophageal cancer.



This work was supported by grants from the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20172005) and the Shanghai Jiao Tong University Cooperation Grant of Medicine, Science and Engineering (YG2015QN39). The authors thank Dr. Maosheng Huang, statistician from the Department of Epidemiology, the University of Texas MD Anderson Cancer Center for review of the manuscript.


The authors declare no conflicts of interest.


  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.Google Scholar
  2. 2.
    Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRefGoogle Scholar
  3. 3.
    Lagergren J, Smyth E, Cunningham D, Lagergren P. Oesophageal cancer. Lancet. 2017;390(10110):2383–96.CrossRefGoogle Scholar
  4. 4.
    Napier KJ, Scheerer M, Misra S. Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol. 2014;6(5):112–20.CrossRefGoogle Scholar
  5. 5.
    Lewis I. The surgical treatment of carcinoma of the oesophagus; with special reference to a new operation for growths of the middle third. Br J Surg. 1946;34:18–31.CrossRefGoogle Scholar
  6. 6.
    Boone J, Livestro DP, Elias SG, Borel Rinkes IH, van Hillegersberg R. International survey on esophageal cancer: part I surgical techniques. Dis Esophagus. 2009;22(3):195–202.CrossRefGoogle Scholar
  7. 7.
    Hulscher JB, Tijssen JG, Obertop H, van Lanschot JJ. Transthoracic versus transhiatal resection for carcinoma of the esophagus: a meta-analysis. Ann Thorac Surg. 2001;72(1):306–13.CrossRefGoogle Scholar
  8. 8.
    Lazzarino AI, Nagpal K, Bottle A, Faiz O, Moorthy K, Aylin P. Open versus minimally invasive esophagectomy: trends of utilization and associated outcomes in England. Annals Surg. 2010;252(2):292–8.CrossRefGoogle Scholar
  9. 9.
    Moon DH, Lee JM, Jeon JH, Yang HC, Kim MS. Clinical outcomes of video-assisted thoracoscopic surgery esophagectomy for esophageal cancer: a propensity score-matched analysis. J Thorac Dis. 2017;9(9):3005–12.CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Xiang J, Han Y, et al. Initial experience of robot-assisted Ivor-Lewis esophagectomy: 61 consecutive cases from a single Chinese institution. Dis Esophagus. 2018;31(12):doy048.Google Scholar
  11. 11.
    Cerfolio RJ, Bryant AS, Hawn MT. Technical aspects and early results of robotic esophagectomy with chest anastomosis. J Thorac Cardiovasc Surg. 2013;145(1):90–6.CrossRefGoogle Scholar
  12. 12.
    Hodari A, Park KU, Lace B, Tsiouris A, Hammoud Z. Robot-assisted minimally invasive ivor lewis esophagectomy with real-time perfusion assessment. Ann Thorac Surg. 2015;100(3):947–52.CrossRefGoogle Scholar
  13. 13.
    Wee JO, Bravo-Iniguez CE, Jaklitsch MT. Early experience of robot-assisted esophagectomy with circular end-to-end stapled anastomosis. Ann Thorac Surg. 2016;102(1):253–9.CrossRefGoogle Scholar
  14. 14.
    Talsma K, van Hagen P, Grotenhuis BA, et al. Comparison of the 6th and 7th editions of the UICC-AJCC TNM classification for esophageal cancer. Ann Surg Oncol. 2012;19(7):2142–8.CrossRefGoogle Scholar
  15. 15.
    Giulianotti PC, Coratti A, Angelini M, et al. Robotics in general surgery: personal experience in a large community hospital. Arch Surg. 2003;138(7):777–84.CrossRefGoogle Scholar
  16. 16.
    van der Sluis PC, van der Horst S, May AM, et al. Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer: a randomized controlled trial. Ann Surg. (2018).
  17. 17.
    van der Sluis PC, Ruurda JP, Verhage RJ, et al. Oncologic long-term results of robot-assisted minimally invasive thoraco-laparoscopic esophagectomy with two-field lymphadenectomy for esophageal cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1350-6.CrossRefGoogle Scholar
  18. 18.
    Kernstine KH. The first series of completely robotic esophagectomies with three-field lymphadenectomy: initial experience. Surg Endosc. 2008;22(9):2102.CrossRefGoogle Scholar
  19. 19.
    Dunn DH, Johnson EM, Morphew JA, Dilworth HP, Krueger JL, Banerji N. Robot-assisted transhiatal esophagectomy: a 3-year single-center experience. Dis Esophagus 2013;26(2):159–66.CrossRefGoogle Scholar
  20. 20.
    de la Fuente SG, Weber J, Hoffe SE, Shridhar R, Karl R, Meredith KL. Initial experience from a large referral center with robotic-assisted Ivor Lewis esophagogastrectomy for oncologic purposes. Surg Endosc. 2013;27(9):3339–47.CrossRefGoogle Scholar
  21. 21.
    Sarkaria IS, Rizk NP, Grosser R, et al. Attaining proficiency in robotic-assisted minimally invasive esophagectomy while maximizing safety during procedure development. Innovations. 2016;11(4):268–73.Google Scholar
  22. 22.
    Sarkaria IS, Rizk NP, Finley DJ, et al. Combined thoracoscopic and laparoscopic robotic-assisted minimally invasive esophagectomy using a four-arm platform: experience, technique and cautions during early procedure development. Eur J Cardio-thorac Surg. 2013;43(5):e107–15.CrossRefGoogle Scholar
  23. 23.
    Park S, Hwang Y, Lee HJ, Park IK, Kim YT, Kang CH. Comparison of robot-assisted esophagectomy and thoracoscopic esophagectomy in esophageal squamous cell carcinoma. J Thorac Dis. 2016;8(10):2853–61.CrossRefGoogle Scholar
  24. 24.
    Deng HY, Huang WX, Li G, et al. Comparison of short-term outcomes between robot-assisted minimally invasive esophagectomy and video-assisted minimally invasive esophagectomy in treating middle thoracic esophageal cancer. Dis Esophagus. 2018; 31(8):doy012.Google Scholar
  25. 25.
    Tsurumaru M, Kajiyama Y, Udagawa H, Akiyama H. Outcomes of extended lymph node dissection for squamous cell carcinoma of the thoracic esophagus. Ann Thorac Cardiovasc Surg. 2001;7(6):325–9.Google Scholar
  26. 26.
    van der Horst S, Weijs TJ, Ruurda JP, et al. Robot-assisted minimally invasive thoraco-laparoscopic esophagectomy for esophageal cancer in the upper mediastinum. J Thorac Dis. 2017;9(Suppl 8):S834–42.CrossRefGoogle Scholar
  27. 27.
    Okusanya OT, Sarkaria IS, Hess NR, et al. Robotic assisted minimally invasive esophagectomy (RAMIE): the University of Pittsburgh Medical Center initial experience. Ann Cardiothorac Surg. 2017;6(2):179–85.CrossRefGoogle Scholar
  28. 28.
    Chao YK, Hsieh MJ, Liu YH, Liu HP. Lymph node evaluation in robot-assisted versus video-assisted thoracoscopic esophagectomy for esophageal squamous cell carcinoma: a propensity-matched analysis. World J Surg. 2018;42(2):590–8.CrossRefGoogle Scholar
  29. 29.
    He H, Wu Q, Wang Z, et al. Short-term outcomes of robot-assisted minimally invasive esophagectomy for esophageal cancer: a propensity score matched analysis. J Cardiothorac Surg. 23 2018;13(1):52.Google Scholar
  30. 30.
    Weksler B, Sharma P, Moudgill N, Chojnacki KA, Rosato EL. Robot-assisted minimally invasive esophagectomy is equivalent to thoracoscopic minimally invasive esophagectomy. Dis Esophagus. 2012;25(5):403–9.CrossRefGoogle Scholar
  31. 31.
    Maas KW, Biere SS, Scheepers JJ, et al. Minimally invasive intrathoracic anastomosis after Ivor Lewis esophagectomy for cancer: a review of transoral or transthoracic use of staplers. Surg Endosc. 2012;26(7):1795–802.CrossRefGoogle Scholar
  32. 32.
    Elshaer M, Gravante G, Tang CB, Jayanthi NV. Totally minimally invasive two-stage esophagectomy with intrathoracic hand-sewn anastomosis: short-term clinical and oncological outcomes. Dis Esophagus. 2018;31(3):dox150.Google Scholar
  33. 33.
    Cadiere GB, Dapri G, Himpens J, Fodderie L, Rajan A. Ivor Lewis esophagectomy with manual esogastric anastomosis by thoracoscopy in prone position and laparoscopy. Surg Endosc. 2010;24(6):1482–5.CrossRefGoogle Scholar
  34. 34.
    Diez Del Val I, Loureiro Gonzalez C, Larburu Etxaniz S, et al. Contribution of robotics to minimally invasive esophagectomy. J Robotic Surg. 2013;7(4):325–32.CrossRefGoogle Scholar
  35. 35.
    Trugeda S, Fernandez-Diaz MJ, Rodriguez-Sanjuan JC, Palazuelos CM, Fernandez-Escalante C, Gomez-Fleitas M. Initial results of robot-assisted Ivor-Lewis oesophagectomy with intrathoracic hand-sewn anastomosis in the prone position. Int J Med Robot. 2014;10(4):397–403.CrossRefGoogle Scholar
  36. 36.
    Bongiolatti S, Annecchiarico M, Di Marino M, et al. Robot-sewn Ivor-Lewis anastomosis: preliminary experience and technical details. Int J Med Robot. 2016;12(3):421–426.CrossRefGoogle Scholar
  37. 37.
    van der Sluis PC, Ruurda JP, van der Horst S, Goense L, van Hillegersberg R. Learning curve for robot-assisted minimally invasive thoracoscopic esophagectomy: results from 312 cases. Ann Thorac Surg. 2018;106(1):264–71.CrossRefGoogle Scholar
  38. 38.
    Tapias LF, Morse CR. Minimally invasive Ivor Lewis esophagectomy: description of a learning curve. J Am Coll Surg. 2014;218(6):1130–40.CrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2019

Authors and Affiliations

  • Yajie Zhang
    • 1
  • Yu Han
    • 1
  • Qinyi Gan
    • 1
  • Jie Xiang
    • 1
  • Runsen Jin
    • 1
  • Kai Chen
    • 1
  • Jiaming Che
    • 1
  • Junbiao Hang
    • 1
  • Hecheng Li
    • 1
    Email author
  1. 1.Department of Thoracic Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations