Skip to main content

Advertisement

Log in

Peripheral Circulating Tumor DNA Detection Predicts Poor Outcomes After Liver Resection for Metastatic Colorectal Cancer

  • Hepatobiliary Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Liver resection can be curative for well-selected metastatic colorectal cancer (CRC) patients. Circulating tumor DNA (ctDNA) has shown promise as a biomarker for tumor dynamics and recurrence following CRC resection. This prospective pilot study investigated the use of ctDNA to predict disease outcome in resected CRC patients.

Methods

Between November 2014 and November 2015, 60 patients with CRC were identified and prospectively enrolled. During liver resection, blood was drawn from peripheral (PERIPH), portal (PV), and hepatic (HV) veins, and 3–4 weeks postoperatively from a peripheral vein (POSTOP). Kappa statistics were used to compare mutated (mt) genes in tissue and ctDNA. Disease-specific and disease-free survival (DSS and DFS) were assessed from surgery with Kaplan–Meier and Cox methods.

Results

For the 59 eligible patients, the most commonly mutated genes were TP53 (mtTP53: 47.5%) and APC (mtAPC: 50.8%). Substantial to almost-perfect agreement was seen between ctDNA from PERIPH and PV (mtTP53: 89.8%, κ = 0.73, 95% confidence interval [CI] 0.53–0.93; mtAPC: 94.9%, κ = 0.83, 95% CI 0.64–1.00), as well as HV (mtTP53: 91.5%, κ = 0.78, 95% CI 0.60–0.96; mtAPC: 91.5%, κ = 0.73, 95% CI 0.51–0.95). Tumor mutations and PERIPH ctDNA had fair-to-moderate agreement (mtTP53: 72.9%, κ = 0.44, 95% CI 0.23–0.66; mtAPC: 61.0%, κ = 0.23, 95% CI 0.04–0.42). Detection of PERIPH mtTP53 was associated with worse 2-year DSS (mt+ 79% vs. mt− 90%, P = 0.024).

Conclusions

Peripheral blood reflects the perihepatic ctDNA signature. Disagreement between tissue and ctDNA mutations may reflect the true natural history of tumor genes or an assay limitation. Peripheral ctDNA detection before liver resection is associated with worse DSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67(3):177–93.

    Article  PubMed  Google Scholar 

  2. van der Geest LG, Lam-Boer J, Koopman M, Verhoef C, Elferink MA, de Wilt JH. Nationwide trends in incidence, treatment and survival of colorectal cancer patients with synchronous metastases. Clin Exp Metastasis. 2015;32(5):457–65.

    Article  CAS  PubMed  Google Scholar 

  3. Riihimaki M, Hemminki A, Sundquist J, Hemminki K. Patterns of metastasis in colon and rectal cancer. Sci Rep. 2016;6:29765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andres A, Mentha G, Adam R, et al. Surgical management of patients with colorectal cancer and simultaneous liver and lung metastases. Br J Surg. 2015;102(6):691–9.

    Article  CAS  PubMed  Google Scholar 

  5. de Jong MC, Pulitano C, Ribero D, et al. Rates and patterns of recurrence following curative intent surgery for colorectal liver metastasis: an international multi-institutional analysis of 1669 patients. Ann Surg. 2009;250(3):440–8.

    PubMed  Google Scholar 

  6. Litvak A, Cercek A, Segal N, et al. False-positive elevations of carcinoembryonic antigen in patients with a history of resected colorectal cancer. J Natl Compr Canc Netw. 2014;12(6):907–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loewenstein MS, Zamcheck N. Carcinoembryonic antigen (CEA) levels in benign gastrointestinal disease states. Cancer. 1978;42(3 Suppl):1412–8.

    Article  CAS  PubMed  Google Scholar 

  8. Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.

    Article  CAS  PubMed  Google Scholar 

  9. Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17.

    Article  PubMed  Google Scholar 

  10. Yaeger R, Cercek A, Chou JF, et al. BRAF mutation predicts for poor outcomes after metastasectomy in patients with metastatic colorectal cancer. Cancer. 2014;120(15):2316–24.

    Article  CAS  PubMed  Google Scholar 

  11. Gagniere J, Dupre A, Gholami SS, et al. Is hepatectomy justified for BRAF mutant colorectal liver metastases? A multi-institutional analysis of 1497 patients. Ann Surg. 2018. https://doi.org/10.1097/SLA.0000000000002968.

  12. Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.

    CAS  PubMed  Google Scholar 

  13. Heitzer E, Auer M, Ulz P, Geigl JB, Speicher MR. Circulating tumor cells and DNA as liquid biopsies. Genome Med. 2013;5(8):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  CAS  PubMed  Google Scholar 

  15. Tie J, Kinde I, Wang Y, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26(8):1715–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kidess E, Heirich K, Wiggin M, et al. Mutation profiling of tumor DNA from plasma and tumor tissue of colorectal cancer patients with a novel, high-sensitivity multiplexed mutation detection platform. Oncotarget. 2015;6(4):2549–61.

    Article  PubMed  Google Scholar 

  17. Thierry AR, Mouliere F, El Messaoudi S, et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 2014;20(4):430–5.

    Article  CAS  PubMed  Google Scholar 

  18. Spindler KL, Pallisgaard N, Andersen RF, Brandslund I, Jakobsen A. Circulating free DNA as biomarker and source for mutation detection in metastatic colorectal cancer. PLoS ONE. 2015;10(4):e0108247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garlan F, Laurent-Puig P, Sefrioui D, et al. Early evaluation of circulating tumor DNA as marker of therapeutic efficacy in metastatic colorectal cancer patients (PLACOL Study). Clin Cancer Res. 2017;23(18):5416–25.

    Article  CAS  PubMed  Google Scholar 

  20. Connor AA, McNamara K, Al-Sukhni E, et al. Central, but not peripheral, circulating tumor cells are prognostic in patients undergoing resection of colorectal cancer liver metastases. Ann Surg Oncol. 2016;23(7):2168–75.

    Article  PubMed  Google Scholar 

  21. Jiao LR, Apostolopoulos C, Jacob J, et al. Unique localization of circulating tumor cells in patients with hepatic metastases. J Clin Oncol. 2009;27(36):6160–5.

    Article  PubMed  Google Scholar 

  22. Cheng DT, Mitchell TN, Zehir A, et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17(3):251–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stadler ZK, Battaglin F, Middha S, et al. Reliable detection of mismatch repair deficiency in colorectal cancers using mutational load in next-generation sequencing panels. J Clin Oncol. 2016;34(18):2141–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39(3):347–51.

    Article  CAS  PubMed  Google Scholar 

  25. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  26. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beije N, Helmijr JC, Weerts MJA, et al. Somatic mutation detection using various targeted detection assays in paired samples of circulating tumor DNA, primary tumor and metastases from patients undergoing resection of colorectal liver metastases. Mol Oncol. 2016;10(10):1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gai W, Ji L, Lam WKJ, et al. Liver- and colon-specific DNA methylation markers in plasma for investigation of colorectal cancers with or without liver metastases. Clin Chem. 2018;64(8):1239–49.

    Article  CAS  PubMed  Google Scholar 

  29. Chang MT, Asthana S, Gao SP, et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol. 2016;34(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  30. Chang MT, Bhattarai TS, Schram AM, et al. Accelerating discovery of functional mutant alleles in cancer. Cancer Discov. 2018;8(2):174–83.

    Article  CAS  PubMed  Google Scholar 

  31. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  32. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra224.

    Article  CAS  Google Scholar 

  33. Schmiegel W, Scott RJ, Dooley S, et al. Blood-based detection of RAS mutations to guide anti-EGFR therapy in colorectal cancer patients: concordance of results from circulating tumor DNA and tissue-based RAS testing. Mol Oncol. 2017;11(2):208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun Q, Liu Y, Liu B, Liu Y. Use of liquid biopsy in monitoring colorectal cancer progression shows strong clinical correlation. Am J Med Sci. 2018;355(3):220–7.

    Article  PubMed  Google Scholar 

  35. Lecomte T, Berger A, Zinzindohoue F, et al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer. 2002;100(5):542–8.

    Article  CAS  PubMed  Google Scholar 

  36. Vietsch EE, Graham GT, McCutcheon JN, et al. Circulating cell-free DNA mutation patterns in early and late stage colon and pancreatic cancer. Cancer Genet. 2017;218-219:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin JK, Lin PC, Lin CH, et al. Clinical relevance of alterations in quantity and quality of plasma DNA in colorectal cancer patients: based on the mutation spectra detected in primary tumors. Ann Surg Oncol. 2014;21 Suppl 4:S680–6.

    Article  PubMed  Google Scholar 

  38. Vakiani E, Janakiraman M, Shen R, et al. Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol. 2012;30(24):2956–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chakravarty D, Gao J, Phillips SM, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017. https://doi.org/10.1200/PO.17.00011.

  40. Spindler KG, Boysen AK, Pallisgard N, et al. Cell-free DNA in metastatic colorectal cancer: a systematic review and meta-analysis. Oncologist. 2017;22(9):1049–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jorissen RN, Christie M, Mouradov D, et al. Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer. Br J Cancer. 2015;113(6):979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  43. Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102(45):16368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee SY, Haq F, Kim D, et al. Comparative genomic analysis of primary and synchronous metastatic colorectal cancers. PLoS ONE. 2014;9(3):e90459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the NIH/NCI P30 CA008748 Cancer Center Support Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Peter Kingham MD.

Ethics declarations

Disclosure

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayan, R.R., Goldman, D.A., Gonen, M. et al. Peripheral Circulating Tumor DNA Detection Predicts Poor Outcomes After Liver Resection for Metastatic Colorectal Cancer. Ann Surg Oncol 26, 1824–1832 (2019). https://doi.org/10.1245/s10434-019-07201-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-019-07201-5

Navigation