Ashikaga T, Krag DN, Land SR, et al. Morbidity results from the NSABP B-32 trial comparing sentinel lymph node dissection versus axillary dissection. J Surg Oncol. 2010;102(2):111–8.
Article
PubMed
PubMed Central
Google Scholar
Hayes S, Di Sipio T, Rye S, et al. Prevalence and prognostic significance of secondary lymphedema following breast cancer. Lymphatic Res Biol. 2011;9(3):135–41.
Article
Google Scholar
Whitworth PW, Cooper A. Reducing chronic breast cancer-related lymphedema utilizing a program of prospective surveillance with bioimpedance spectroscopy. Breast J. 2018;24(1):62–5.
CAS
Article
PubMed
Google Scholar
Kaufman DI, Shah C, Vicini FA, Rizzi M. Utilization of bioimpedance spectroscopy in the prevention of chronic breast cancer-related lymphedema. Breast Cancer Res Treat. 2017;166(3):809–15.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zou L, Liu FH, Shen PP, et al. The incidence and risk factors of related lymphedema for breast cancer survivors post-operation: a 2-year follow-up prospective cohort study. Breast cancer (Tokyo, Japan). 2018;25(3):309–14.
Article
Google Scholar
Tengrup I, Tennvall-Nittby L, Christiansson I, Laurin M. Arm morbidity after breast-conserving therapy for breast cancer. Acta Oncol (Stockholm, Sweden). 2000;39(3):393–7.
CAS
Article
Google Scholar
Armer JM, Stewart BR. A comparison of four diagnostic criteria for lymphedema in a post-breast cancer population. Lymphatic Res Biol. 2005;3(4):208–17.
Article
Google Scholar
Beaulac SM, McNair LA, Scott TE, LaMorte WW, Kavanah MT. Lymphedema and quality of life in survivors of early-stage breast cancer. Arch Surg (Chicago, Ill.: 1960). 2002;137(11):1253–7.
Article
Google Scholar
Deutsch M, Land S, Begovic M, Sharif S. The incidence of arm edema in women with breast cancer randomized on the National Surgical Adjuvant Breast and Bowel Project study B-04 to radical mastectomy versus total mastectomy and radiotherapy versus total mastectomy alone. Int J Radiat Oncol Biol Phys. 2008;70(4):1020–4.
Article
PubMed
Google Scholar
Francis WP, Abghari P, Du W, Rymal C, Suna M, Kosir MA. Improving surgical outcomes: standardizing the reporting of incidence and severity of acute lymphedema after sentinel lymph node biopsy and axillary lymph node dissection. Am J Surg. 2006;192(5):636–9.
Article
PubMed
Google Scholar
Kopec JA, Colangelo LH, Land SR, et al. Relationship between arm morbidity and patient-reported outcomes following surgery in women with node-negative NSABP protocol B-32. J Support Oncol. 2013;11(1):22–30.
PubMed
PubMed Central
Google Scholar
Iyigun ZE, Duymaz T, Ilgun AS, et al. Preoperative lymphedema-related risk factors in early-stage breast cancer. Lymphatic Res Biol. 2018;16(1):28–35.
Article
Google Scholar
Hahamoff M, Gupta N, Munoz D, et al. A lymphedema surveillance program for breast cancer patients reveals the promise of surgical prevention. J Surg Res. 2018. https://doi.org/10.1016/j.jss.2017.10.008.
Cornish BH, Chapman M, Hirst C, et al. Early diagnosis of lymphedema using multiple frequency bioimpedance. Lymphology. 2001;34(1):2–11.
CAS
PubMed
Google Scholar
Reichart K. Lymphedema: improving screening and treatment among at-risk breast cancer survivors. Clin J Oncol Nurs. 2017;21(1):21–5.
Article
PubMed
Google Scholar
Soran A, Ozmen T, McGuire KP, et al. The importance of detection of subclinical lymphedema for the prevention of breast cancer-related clinical lymphedema after axillary lymph node dissection; a prospective observational study. Lymphatic Res Biol. 2014;12(4):289–94.
Article
Google Scholar
Norman SA, Localio AR, Potashnik SL, et al. Lymphedema in breast cancer survivors: incidence, degree, time course, treatment, and symptoms. J Clin Oncol. 2009;27(3):390–7.
Article
PubMed
PubMed Central
Google Scholar
Seward C, Skolny M, Brunelle C, Asdourian M, Salama L, Taghian AG. A comprehensive review of bioimpedance spectroscopy as a diagnostic tool for the detection and measurement of breast cancer-related lymphedema. J Surg Oncol. 2016;114(5):537–42.
Article
PubMed
Google Scholar
Shah C, Vicini F, Beitsch P, et al. The use of bioimpedance spectroscopy to monitor therapeutic intervention in patients treated for breast cancer related lymphedema. Lymphology. 2013;46(4):184–92.
CAS
PubMed
Google Scholar
Vicini F, Shah C, Lyden M, Whitworth P. Bioelectrical impedance for detecting and monitoring patients for the development of upper limb lymphedema in the clinic. Clin Breast Cancer. 2012;12(2):133–7.
Article
PubMed
Google Scholar
Fu MR, Cleland CM, Guth AA, et al. L-dex ratio in detecting breast cancer-related lymphedema: reliability, sensitivity, and specificity. Lymphology. 2013;46(2):85–96.
CAS
PubMed
PubMed Central
Google Scholar
Torres Lacomba M, Yuste Sanchez MJ, Zapico Goni A, et al. Effectiveness of early physiotherapy to prevent lymphoedema after surgery for breast cancer: randomised, single blinded, clinical trial. BMJ (Clin Res ed.). 2010;340:b5396.
Article
Google Scholar
Stout Gergich NL, Pfalzer LA, McGarvey C, Springer B, Gerber LH, Soballe P. Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer. 2008;112(12):2809–19.
Article
PubMed
Google Scholar
Shah C, Vicini FA, Arthur D. Bioimpedance spectroscopy for breast cancer related lymphedema assessment: clinical practice guidelines. Breast J. 2016;22(6):645–50.
Article
PubMed
Google Scholar
Ridner SH, Shih YC, Doersam JK, Rhoten BA, Schultze BS, Dietrich MS. A pilot randomized trial evaluating lymphedema self-measurement with bioelectrical impedance, self-care adherence, and health outcomes. Lymphatic Res Biol. 2014;12(4):258–66.
Article
Google Scholar
Laidley A, Anglin B. The Impact of L-Dex((R)) Measurements in assessing breast cancer-related lymphedema as part of routine clinical practice. Front Oncol. 2016;6:192.
Article
PubMed
PubMed Central
Google Scholar
Clark B, Sitzia J, Harlow W. Incidence and risk of arm oedema following treatment for breast cancer: a three-year follow-up study. QJM. 2005;98(5):343–8.
CAS
Article
PubMed
Google Scholar
Kuwajerwala NK, Feczko C, Dekhne N, et al. Comparison of lymphedema in patients with axillary lymph node dissections to those with sentinel lymph node biopsy followed by immediate and delayed ALND. Am J Clin Oncol. 2013;36(1):20–3.
Article
PubMed
Google Scholar