Advertisement

Annals of Surgical Oncology

, Volume 25, Issue 7, pp 2083–2090 | Cite as

Troponin I2 as a Specific Biomarker for Prediction of Peritoneal Metastasis in Gastric Cancer

  • Koichi Sawaki
  • Mitsuro Kanda
  • Takashi Miwa
  • Shinichi Umeda
  • Haruyoshi Tanaka
  • Chie Tanaka
  • Daisuke Kobayashi
  • Masaya Suenaga
  • Norifumi Hattori
  • Masamichi Hayashi
  • Suguru Yamada
  • Goro Nakayama
  • Michitaka Fujiwara
  • Yasuhiro Kodera
Translational Research and Biomarkers

Abstract

Background

Although peritoneal metastasis is a serious concern in patients with gastric cancer, no acceptable and specific biomarker is available. We aimed to identify a candidate biomarker to predict peritoneal metastasis of gastric cancer.

Methods

Metastatic pathway-specific transcriptome analysis was conducted by comparison of patient groups with no recurrence and with peritoneal, hepatic, and nodal recurrence. Fifteen cell lines and 262 pairs of surgically resected gastric tissues were subjected to messenger RNA (mRNA) expression analysis. Polymerase chain reaction array analysis was performed to explore coordinately expressed cancer-related genes. To evaluate the in situ protein localization and expression patterns, immunohistochemical staining was performed.

Results

From transcriptome data, troponin I2 (TNNI2) was identified as a candidate molecule specifically overexpressed in gastric cancer prone to peritoneal metastasis. TNNI2 mRNA was expressed at differential levels, independent of differentiated phenotype of cell lines. Epithelial to mesenchymal transition-related genes, tumor inhibitor of metalloproteinase 1 (TIMP1), and vacuolar protein sorting 13 homolog A (VPS13A) were expressed with TNNI2 at correlation coefficient > 0.7. The optimal cutoff of TNNI2 expression was determined as 0.00017. High TNNI2 expression was significantly and specifically associated with peritoneal metastasis and served as an independent risk marker for peritoneal recurrence after curative gastrectomy. Prevalence of peritoneal recurrence increased in parallel with staining intensity of TNNI2.

Conclusions

TNNI2 expression in gastric tissues may serve as a specific biomarker for prediction of peritoneal metastasis of gastric cancer and contribute to improvement of patient management.

Notes

Disclosure

None

Supplementary material

10434_2018_6480_MOESM1_ESM.doc (38 kb)
Supplementary material 1 (DOC 37 kb)
10434_2018_6480_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 21 kb)

References

  1. 1.
    Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388:2654–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Kanda M, Shimizu D, Tanaka H, et al. Significance of SYT8 for the detection, prediction, and treatment of peritoneal metastasis from gastric cancer. Ann Surg. 2018;267:495–503.PubMedGoogle Scholar
  3. 3.
    Kodera Y, Takahashi N, Yoshikawa T, et al. Feasibility of weekly intraperitoneal versus intravenous paclitaxel therapy delivered from the day of radical surgery for gastric cancer: a preliminary safety analysis of the INPACT study, a randomized controlled trial. Gastric Cancer. 2016;20:190–9.Google Scholar
  4. 4.
    Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA. Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol. 2013;10:643–55.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Duraes C, Almeida GM, Seruca R, Oliveira C, Carneiro F. Biomarkers for gastric cancer: prognostic, predictive or targets of therapy? Virchows Arch. 2014;464:367–78.CrossRefPubMedGoogle Scholar
  6. 6.
    McLean MH, El-Omar EM. Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol. 2014;11:664–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Kanda M, Shimizu D, Tanaka H, et al. Metastatic pathway-specific transcriptome analysis identifies MFSD4 as a putative tumor suppressor and biomarker for hepatic metastasis in patients with gastric cancer. Oncotarget. 2016;7:13667–79.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med. 2008;359:2814–23.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kanda M, Tanaka C, Kobayashi D, et al. Epigenetic suppression of the immunoregulator MZB1 is associated with the malignant phenotype of gastric cancer. Int J Cancer. 2016;139:2290–98.CrossRefPubMedGoogle Scholar
  10. 10.
    Hasegawa T, Yashiro M, Nishii T, et al. Cancer-associated fibroblasts might sustain the stemness of scirrhous gastric cancer cells via transforming growth factor-beta signaling. Int J Cancer. 2014;134:1785–95.CrossRefPubMedGoogle Scholar
  11. 11.
    Miao ZF, Wang ZN, Zhao TT, et al. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1alpha. Stem Cells. 2014;32:3062–74.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kanda M, Kodera Y. Molecular mechanisms of peritoneal dissemination in gastric cancer. World J Gastroenterol. 2016;22:6829–40.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sasako M, Sakuramoto S, Katai H, et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol. 2011;29:4387–93.CrossRefPubMedGoogle Scholar
  14. 14.
    Kanda M, Murotani K, Kobayashi D, et al. Postoperative adjuvant chemotherapy with S-1 alters recurrence patterns and prognostic factors among patients with stage II/III gastric cancer: A propensity score matching analysis. Surgery. 2015;158:1573–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Szasz AM, Lanczky A, Nagy A, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget. 2016;7:49322–33.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Miwa T, Kanda M, Tanaka H, et al. FBXO50 enhances the malignant behavior of gastric cancer cells. Ann Surg Oncol. 2017;24:3771–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Shimizu D, Kanda M, Tanaka H, et al. GPR155 serves as a predictive biomarker for hematogenous metastasis in patients with gastric cancer. Sci Rep. 2017;7:42089.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kanda M, Shimizu D, Fujii T, et al. Function and diagnostic value of Anosmin-1 in gastric cancer progression. Int J Cancer. 2016;138:721–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Kanda M, Nomoto S, Oya H, et al. The expression of melanoma-associated antigen D2 both in surgically resected and serum samples serves as clinically relevant biomarker of gastric cancer progression. Ann Surg Oncol. 2016;23:214–21.CrossRefGoogle Scholar
  20. 20.
    Jiang M, Zhao X, Han W, et al. A novel deletion in TNNI2 causes distal arthrogryposis in a large Chinese family with marked variability of expression. Hum Genet. 2006;120:238–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhu X, Wang F, Zhao Y, et al. A gain-of-function mutation in Tnni2 impeded bone development through increasing Hif3a expression in DA2B mice. PLoS Genet. 2014;10:e1004589.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sheng JJ, Jin JP. TNNI1, TNNI2 and TNNI3: evolution, regulation, and protein structure-function relationships. Gene. 2016;576:385–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Xu ZY, Yang H, Xiong YZ, et al. Identification of three novel SNPs and association with carcass traits in porcine TNNI1 and TNNI2. Mol Biol Rep. 2010;37:3609–13.CrossRefPubMedGoogle Scholar
  24. 24.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen X, Li J, Hu L, et al. The clinical significance of snail protein expression in gastric cancer: a meta-analysis. Hum Genomics. 2016;10:22.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kanda M, Shimizu D, Fujii T, et al. Neurotrophin receptor-interacting melanoma antigen-encoding gene homolog is associated with malignant phenotype of gastric cancer. Ann Surg Oncol. 2016;23:532–9.Google Scholar
  27. 27.
    D’Angelo RC, Liu XW, Najy AJ, et al. TIMP-1 via TWIST1 induces EMT phenotypes in human breast epithelial cells. Mol Cancer Res. 2014;12:1324–33.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Honisch S, Yu W, Liu G, et al. Chorein addiction in VPS13A overexpressing rhabdomyosarcoma cells. Oncotarget. 2015;6:10309–19.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Leung WK, Wu MS, Kakugawa Y, et al. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol. 2008;9:279–87.CrossRefPubMedGoogle Scholar
  30. 30.
    Lin LL, Huang HC, Juan HF. Discovery of biomarkers for gastric cancer: a proteomics approach. J Proteomics. 2012;75:3081–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Pirog EC. Immunohistochemistry and in situ hybridization for the diagnosis and classification of squamous lesions of the anogenital region. Semin Diagn Pathol. 2015;32:409–18.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2018

Authors and Affiliations

  • Koichi Sawaki
    • 1
  • Mitsuro Kanda
    • 1
  • Takashi Miwa
    • 1
  • Shinichi Umeda
    • 1
  • Haruyoshi Tanaka
    • 1
  • Chie Tanaka
    • 1
  • Daisuke Kobayashi
    • 1
  • Masaya Suenaga
    • 1
  • Norifumi Hattori
    • 1
  • Masamichi Hayashi
    • 1
  • Suguru Yamada
    • 1
  • Goro Nakayama
    • 1
  • Michitaka Fujiwara
    • 1
  • Yasuhiro Kodera
    • 1
  1. 1.Department of Gastroenterological Surgery (Surgery II)Nagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations