Skip to main content

Advertisement

Log in

CT Density in the Pancreas is a Promising Imaging Predictor for Pancreatic Ductal Adenocarcinoma

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Fatty pancreas (FP) was recently recognized as a risk factor for pancreatic ductal adenocarcinoma (PDAC). It is unclear whether computed tomography (CT) can be used to make a FP diagnosis. This study investigated whether CT could provide a predictive value for PDAC by diagnosing FP.

Methods

The study included 183 consecutive patients who underwent distal pancreatectomy from February 2007 to January 2017, including 75 cases of PDAC and 108 cases of other pancreatic disease. Pancreatic CT density (pancreatic index; PI) at the initial diagnosis was calculated by dividing the CT number in the pancreas by the number in the spleen. To assess whether CT could be used to detect FP, 43 cases were evaluated pathologically for FP. We investigated the correlation between FP and PI, and determined the optimal PI cutoff value for detecting FP using receiver operating characteristics analysis. We then investigated whether the PI value could be used as a predictor for PDAC.

Results

Fourteen cases (32.6%) were pathologically diagnosed with FP. PI was significantly lower in the FP group versus the non-FP group (0.51 vs. 0.83; p = 0.0049). ROC analysis indicated that the PI had good diagnostic accuracy for FP diagnosis (cutoff value 0.70; sensitivity 0.79, specificity 0.79). Low PI (≤0.70) was identified in the multivariate analysis as an independent risk factor for PDAC (odds ratio 2.31; p = 0.023).

Conclusions

PI was strongly associated with pathological FP, which was independently associated with PDAC. PI shows promise as an imaging predictor for PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cancer.net. Pancreatic cancer: Statistics. http://www.cancer.net/cancer-types/pancreatic-cancer/statistics. Accessed 26 Feb 2017.

  2. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumors, 7th edn. Hoboken, NJ: John Wiley & Sons 2009.

    Google Scholar 

  3. Han SH, Heo JS, Choi SH, et al. Actual long-term outcome of T1 and T2 pancreatic ductal adenocarcinoma after surgical resection. J Surg. 2017. DOI:10.1016/j.ijsu.2017.02.007.

    Google Scholar 

  4. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.

    Article  CAS  PubMed  Google Scholar 

  5. Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691-703.

    Article  Google Scholar 

  6. Mizuguchi T, Torigoe T, Satomi F, et al. Trials of vaccines for pancreatic ductal adenocarcinoma: Is there any hope of an improved prognosis? Surg Today. 2016;46:139-48.

    Article  CAS  PubMed  Google Scholar 

  7. Malka D, Hammel P, Maire F, et al. Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut. 2002;51:849-52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cancer.Net. Pancreatic cancer: risk factors. http://www.cancer.net/cancer-types/pancreatic-cancer/risk-factors. Accessed 26 Feb 2017.

  9. Furukawa H. Diagnostic clues for early pancreatic cancer. Jpn J Clin Oncol. 2002;32:391-2.

    Article  PubMed  Google Scholar 

  10. Batabyal P, Vander Hoorn S, Christophi C, Nikfarjam M. Association of diabetes mellitus and pancreatic adenocarcinoma: a meta-analysis of 88 studies. Ann Surg Oncol. 2014;21:2453-62.

    Article  PubMed  Google Scholar 

  11. Hori M, Takahashi M, Hiraoka N, et al. Association of pancreatic Fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol. 2014;5:e53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomita Y, Azuma K, Nonaka Y, et al. Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma. Pancreas. 2014;43:1032-41.

    Article  PubMed  Google Scholar 

  13. Rebours V, Gaujoux S, d’Assignies G, et al. Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN). Clin Cancer Res. 2015;21:3522-8.

    Article  CAS  PubMed  Google Scholar 

  14. Tariq H, Nayudu S, Akella S, Glandt M, Chilimuri S. Non-alcoholic fatty pancreatic disease: a review of literature. Gastroenterology Res. 2016;9:87-91.

    Article  Google Scholar 

  15. Wang H, Maitra A, Wang H. Obesity, Intrapancreatic Fatty Infiltration, and Pancreatic Cancer. Clin Cancer Res. 2015;21:3369-71.

    Article  CAS  PubMed  Google Scholar 

  16. Wang CY, Ou HY, Chen MF, Chang TC, Chang CJ. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. Am J Heart Assoc. 2014;3:e000297.

    Article  Google Scholar 

  17. Lesmana CR, Pakasi LS, Inggriani S, Aidawati ML, Lesmana LA. Prevalence of Non-Alcoholic Fatty Pancreas Disease (NAFPD) and its risk factors among adult medical check-up patients in a private hospital: a large cross-sectional study. BMC Gastroenterol. 2015;15:174.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Adler M, Schaffner F. Fatty liver hepatitis and cirrhosis in obese patients. Am J Med. 1979;67:811-6.

    Article  CAS  PubMed  Google Scholar 

  19. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467-74.

    Article  CAS  PubMed  Google Scholar 

  20. Ricci C, Longo R, Gioulis E, et al. Noninvasive in vivo quantitative assessment of fat content in human liver. J Hepatol. 1997;27:108-13.

    Article  CAS  PubMed  Google Scholar 

  21. Kodama Y, Ng CS, Wu TT, et al. Comparison of CT methods for determining the fat content of the liver. Am J Roentgenol. 2007;188:1307-12.

    Article  Google Scholar 

  22. Kim SY, Kim H, Cho JY, et al. Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology. 2014;271:104-12.

    Article  PubMed  Google Scholar 

  23. Chitturi S, Farrell GC, Hashimoto E, Saibara T, Lau GK, Sollano JD. Non-alcoholic fatty liver disease in the Asia-Pacific region: definitions and overview of proposed guidelines. J Gastroenterol Hepatol. 2007;22:778-87.

    Article  PubMed  Google Scholar 

  24. Japan Diabetes Society. 2015. Treatment guide for diabetes 2014–2015 (in Japanese): BUNKODO.

  25. Fukuda Y, Yamada D, Eguchi H, et al. A novel preoperative predictor of pancreatic fistula using computed tomography after distal pancreatectomy with stapler closure. Surg Today. 2017 DOI:10.1007/s00595-017-1495-9

    PubMed  Google Scholar 

  26. Pecorelli N, Carrara G, De Cobelli F, et al. Effect of sarcopenia and visceral obesity on mortality and pancreatic fistula following pancreatic cancer surgery. Br J Surg. 2016;103:434-42.

    Article  CAS  PubMed  Google Scholar 

  27. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33:997-1006.

    Article  PubMed  Google Scholar 

  28. Stolzenberg-Solomon RZ, Adams K, Leitzmann M, et al. Adiposity, physical activity, and pancreatic cancer in the National Institutes of Health-AARP Diet and Health Cohort. Am J Epidemiol. 2008;167:586-97.

    Article  PubMed  Google Scholar 

  29. Ogilvie RF. The islands of Langerhans in 19 cases of obesity. J Pathol Bacterol. 1933;37:473-81.

    Article  Google Scholar 

  30. Smits MM, van Geenen EJ. The clinical significance of pancreatic steatosis. Nat Rev Gastroenterol Hepatol. 2011;8:169-77.

    Article  PubMed  Google Scholar 

  31. Mathur A, Pitt HA, Marine M, et al. Fatty pancreas: a factor in postoperative pancreatic fistula. Ann Surg. 2007;246:1058-64.

    Article  PubMed  Google Scholar 

  32. Hori M, Kitahashi T, Imai T, et al. Enhancement of carcinogenesis and fatty infiltration in the pancreas in N-nitrosobis(2-oxopropyl)amine-treated hamsters by high-fat diet. Pancreas. 2011;40:1234-40.

    Article  CAS  PubMed  Google Scholar 

  33. Philip B, Roland CL, Daniluk J, et al. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology. 2013;145:1449–58.

    Article  CAS  PubMed  Google Scholar 

  34. Yardimci S, Kara YB, Tuney D, Attaallah W, Ugurlu MU, Dulundu E, Yegen ŞC. A simple method to evaluate whether pancreas texture can be used to predict pancreatic fistula risk after pancreatoduodenectomy. J Gastrointest Surg. 2015;19:1625-31.

    Article  PubMed  Google Scholar 

  35. Sandini M, Bernasconi DP, Ippolito D, et al. Preoperative computed tomography to predict and stratify the risk of severe pancreatic fistula after pancreatoduodenectomy. Medicine (Baltimore). 2015;94:e1152.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Eguchi MD, PhD.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, Y., Yamada, D., Eguchi, H. et al. CT Density in the Pancreas is a Promising Imaging Predictor for Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 24, 2762–2769 (2017). https://doi.org/10.1245/s10434-017-5914-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-017-5914-3

Keywords

Navigation