Skip to main content

Advertisement

Log in

Identification and Characterization of CD107a as a Marker of Low Reactive Oxygen Species in Chemoresistant Cells in Colorectal Cancer

  • Colorectal Cancer
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Reactive oxygen species (ROS) generated by chemoradiotherapy lead to cancer cell death. Although ROS regulation mechanisms play important roles in chemoradioresistance, few markers exist that indicated intracellular ROS status. This study aimed to identify novel cell surface markers that represented intracellular ROS status to characterize cells with low ROS (ROSlow) in colorectal cancer (CRC).

Methods

We used ROS indicators and an antibody array with 242 cell surface antibodies to identify markers of ROSlow cells. After validation, we performed immunohistochemical analyses and chemosensitivity assays. We used small interfering RNA to assess the effect of silencing the identified markers. We tested cell differentiation assays with spheroid cell assays.

Results

CD107a was identified as a common marker of ROSlow cells in several CRC cell lines and clinical specimens. CD107a+/ROSlow cells were enriched in HT29 and DLD1 cultures after treatments with oxaliplatin, 5-fluorouracil, and the irinotecan metabolite SN38. CD107a silencing improved chemosensitivity by increasing ROS production. Immunohistochemistry showed enhanced CD107a surface expression on cells that formed immature cell clusters and on cells located in the invasive fronts of cancer foci. CD107a expression was also enhanced on specimens from patients with poorly differentiated adenocarcinoma who had received neoadjuvant chemotherapy. Cell surface CD107a expression was enhanced on cells that formed colonospheres, but expression diminished during cell differentiation.

Conclusions

CD107a was identified as a novel marker of ROSlow cells in CRC. CD107a expression was closely related to chemoresistance and the immature cell phenotype. Anti-CD107a treatments represent a novel approach for targeting chemoresistant cells in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Uehara K, Nagano M. Neoadjuvant treatment for locally advanced rectal cancer: a systematic review. Surg Today. 2016;46:161–8.

    Article  CAS  PubMed  Google Scholar 

  2. Okuma H, Uchikado Y, Setoyama T, Matsumoto M, Owaki T, Ishigami S, et al. Biomarkers for predicting the response of esophageal squamous cell carcinoma to neoadjuvant chemoradiation therapy. Surg Today. 2014;44:421–8.

    Article  Google Scholar 

  3. Hsiang YH, Lihou MG, Liu LF. Arrest of replication forks by drug-stabilized topoisomerase I—DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res. 1989;49:5077–82.

    CAS  PubMed  Google Scholar 

  4. Donaldson KL, Goolsby GL, Wahl AF. Cytotoxicity of the anticancer agents cisplatin and Taxol during cell proliferation and the cell cycle. Int J Cancer. 1994;57:847–55.

    Article  CAS  PubMed  Google Scholar 

  5. Ozben T. Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci. 2007;96:2181–96.

    Article  CAS  PubMed  Google Scholar 

  6. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000;256:42–9.

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Zhu F, Jiang J, Sun C, Wang X, Shen M, et al. Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species–mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells. Cancer Lett. 2015;357:219–30.

    Article  CAS  PubMed  Google Scholar 

  8. Xing Y, Bao W, Fan X, Liu K, Li X, Xi T. A novel oxaliplatin derivative, Ht-2, triggers mitochondrion-dependent apoptosis in human colon cancer cells. Apoptosis. 2015;20:83–91.

    Article  CAS  PubMed  Google Scholar 

  9. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51:794–8.

    CAS  PubMed  Google Scholar 

  10. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010;120:3326–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim HM, Haraguchi N, Ishii H, Ohkuma M, Okano M, Mimori K, et al. Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial–mesenchymal transition–like phenomenon. Ann Surg Oncol. 2012;19: 39–48.

    Google Scholar 

  12. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc- and thereby promotes tumor growth. Cancer Cell. 2011;19:387–400.

    Article  CAS  PubMed  Google Scholar 

  14. Song IS, Jeong YJ, Jeong SH, Heo HJ, Kim HK, Bae KB, et al. FOXM1-induced PRX3 regulates stemness and survival of colon cancer cells via maintenance of mitochondrial function. Gastroenterology. 2015;149:1006–16.

    Article  CAS  PubMed  Google Scholar 

  15. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311:1880–5.

    Article  CAS  PubMed  Google Scholar 

  16. Naka K, Muraguchi T, Hoshii T, Hirao A. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal. 2008;10:1883–94.

    Article  CAS  PubMed  Google Scholar 

  17. Hosokawa K, Arai F, Yoshihara H, Nakamura Y, Gomei Y, Iwasaki H, et al. Function of oxidative stress in the regulation of hematopoietic stem cell–niche interaction. Biochem Biophys Res Commun. 2007;363:578–83.

    Article  CAS  PubMed  Google Scholar 

  18. Reisher SR, Hughes TE, Ordovas JM, Schaefer EJ, Feinstein SI. Increased expression of apolipoprotein genes accompanies differentiation in the intestinal cell line Caco-2. Proc Natl Acad Sci USA. 1993;90:5757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Augeron C, Laboisse CL. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res. 1984;44:3961–9.

    CAS  PubMed  Google Scholar 

  20. Sussman NL, Eliakim R, Rubin D, Perlmutter DH, DeSchryver-Kecskemeti K, Alpers DH. Intestinal alkaline phosphatase is secreted bidirectionally from villous enterocytes. Am J Physiol. 1989;257:G14–23.

    CAS  PubMed  Google Scholar 

  21. Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, Mimori K, et al. CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol. 2008;15:2927–33.

    Article  PubMed  Google Scholar 

  22. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;7123:111–5.

    Article  Google Scholar 

  23. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Alea MP, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 2008;105:13427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei B, Han XY, Qi CL, Zhang S, Zheng ZH, Huang Y, et al. Coaction of spheroid-derived stem-like cells and endothelial progenitor cells promotes development of colon cancer. PLoS ONE. 2012;7:e39069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krzewski K, Gil-Krzewska A, Nguyen V, Peruzzi G, Coligan JE. LAMP1/CD107a is required for efficient perforin delivery to lytic granules and NK-cell cytotoxicity. Blood. 2013;121:4672–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Künzli BM, Berberat PO, Zhu ZW, Martignoni M, Kleeff J, Tempia‐Caliera AA, et al. Influences of the lysosomal associated membrane proteins (Lamp-1, Lamp-2) and Mac-2 binding protein (Mac-2-BP) on the prognosis of pancreatic carcinoma. Cancer. 2002;9:228–39.

    Article  Google Scholar 

  27. Agarwal AK, Srinivasan N, Godbole R, More SK, Budnar S, Gude R, et al. Role of tumor cell surface lysosome-associated membrane protein-1 (LAMP1) and its associated carbohydrates in lung metastasis. J Cancer Res Clin Oncol. 2015;141:1563–74.

    Article  CAS  PubMed  Google Scholar 

  28. Eskelinen EL. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med. 2006;27:495–502.

    Article  CAS  PubMed  Google Scholar 

  29. Shi Y, Tang B, Yu PW, Tang B, Hao YX, Lei X, et al. Autophagy protects against oxaliplatin-induced cell death via ER stress and ROS in Caco-2 cells. PLoS ONE. 2012;7:e51076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding ZB, Hui B, Shi YH, Zhou J, Peng YF, Gu CY, et al. Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clin Cancer Res. 2011;17:6229–38.

    Article  CAS  PubMed  Google Scholar 

  31. Sukhai MA, Prabha S, Hurren R, Rutledge AC, Lee AY, Sriskanthadevan S, et al. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J Clin Invest. 2013;123:315–28.

    Article  CAS  PubMed  Google Scholar 

  32. Jensen SS, Aaberg-Jessen C, Christensen KG, Kristensen B. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas. Int J Clin Exp Pathol. 2013;6:1294–305.

    PubMed  PubMed Central  Google Scholar 

  33. Todaro M, Francipaane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010;138:2151–62.

    Article  CAS  PubMed  Google Scholar 

  34. Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells. 2012;30:363–71.

    Article  CAS  PubMed  Google Scholar 

  35. Huang AF, Chen MW, Huang SM, Kao CL, Lai HC, Chan JY. CD164 regulates the tumorigenesis of ovarian surface epithelial cells through the SDF-1α/CXCR4 axis. Mol Cancer. 2013;12:115.

    Article  Google Scholar 

  36. Tang J, Zhang L, She X, Zhou G, Yu F, Xiang J, et al. Inhibiting CD164 expression in colon cancer cell line HCT116 leads to reduced cancer cell proliferation, mobility, and metastasis in vitro and in vivo. Cancer Invest. 2012;5:380–9.

    Article  Google Scholar 

Download references

Acknowledgement

Supported in part by the Foundation of the Pharma-Link between Academia and Shionogi (FLASH), an initiative between Osaka University and Shionogi & Co. Ltd.

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naotsugu Haraguchi MD, PhD.

Additional information

Tomohiro Kitahara and Naotsugu Haraguchi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitahara, T., Haraguchi, N., Takahashi, H. et al. Identification and Characterization of CD107a as a Marker of Low Reactive Oxygen Species in Chemoresistant Cells in Colorectal Cancer. Ann Surg Oncol 24, 1110–1119 (2017). https://doi.org/10.1245/s10434-016-5671-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-016-5671-8

Keywords

Navigation