Skip to main content

Advertisement

Log in

Aberrant Methylation of FOXE1 Contributes to a Poor Prognosis for Patients with Colorectal Cancer

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

ABSTRACT

Background

Hypermethylation of DNA silences gene expression and is an important event in colorectal cancer (CRC). This study aimed to identify aberrantly methylated genes that contribute to a poor prognosis for patients with CRC.

Methods

The study comprehensively explored DNA methylation microarray profiles from 396 CRC samples and 45 normal control samples in a database and selected aberrantly methylated transcription factors associated with prognosis and metastasis. Using quantitative reverse transcription polymerase chain reaction, the identified genes in 140 patients with CRC were validated to assess the relationship between expression of methylated genes and prognosis.

Results

In the study, FOXE1 was newly identified as a gene associated with prognosis and metastasis in CRC. Expression of FOXE1 in CRC tissues was significantly lower than in normal colorectal tissues (p = 0.01). The survival rate for the patients with low expression of FOXE1 was significantly lower than that for patients with high expression of FOXE1 in uni- and multivariate analyses. Inhibition of DNA methylation recovered FOXE1 expression in CRC cells.

Conclusions

Methylation-mediated silencing of FOXE1 expression was shown to be a potential prognostic factor in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–81.

    Article  CAS  PubMed  Google Scholar 

  4. Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential, and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39:457–66.

    Article  CAS  PubMed  Google Scholar 

  5. Yuan BZ, Durkin ME, Popescu NC. Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. Cancer Genet Cytogenet. 2003;140:113–7.

    Article  CAS  PubMed  Google Scholar 

  6. Fang JY, Lu R, Mikovits JA, Cheng ZH, Zhu HY, Chen YX. Regulation of hMSH2 and hMLH1 expression in the human colon cancer cell line SW1116 by DNA methyltransferase 1. Cancer Lett. 2006;233:124–30.

    Article  CAS  PubMed  Google Scholar 

  7. Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and cancer (review). Oncol Rep. 2014;31:523–32.

    PubMed  Google Scholar 

  8. van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol. 2011;29:1382–91.

    Article  PubMed  Google Scholar 

  9. Simmer F, Brinkman AB, Assenov Y, et al. Comparative genome-wide DNA methylation analysis of colorectal tumor and matched normal tissues. Epigenetics. 2012;7:1355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012;9:215–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seki M, Nishimura R, Yoshida K, et al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun. 2015;6:7557.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.

    Article  CAS  PubMed  Google Scholar 

  13. Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. Genes Dev. 2013;27:1318–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohm JE, McGarvey KM, Yu X, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39:237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schlesinger Y, Straussman R, Keshet I, et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet. 2007;39:232–6.

    Article  CAS  PubMed  Google Scholar 

  16. Katoh M, Katoh M. Human FOX gene family (review). Int J Oncol. 2004;25:1495–500.

    CAS  PubMed  Google Scholar 

  17. Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328:198–206.

    Article  CAS  PubMed  Google Scholar 

  18. Kimura S. Thyroid-specific transcription factors and their roles in thyroid cancer. J Thyroid Res. 2011;2011:710213.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Venza I, Visalli M, Tripodo B, et al. FOXE1 is a target for aberrant methylation in cutaneous squamous cell carcinoma. Br J Dermatol. 2010;162:1093–7.

    Article  CAS  PubMed  Google Scholar 

  20. Sato N, Fukushima N, Maitra A, et al. Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res. 2003;63:3735–42.

    CAS  PubMed  Google Scholar 

  21. Nonaka D, Tang Y, Chiriboga L, Rivera M, Ghossein R. Diagnostic utility of thyroid transcription factors Pax8 and TTF-2 (FoxE1) in thyroid epithelial neoplasms. Mod Pathol. 2008;21:192–200.

    CAS  PubMed  Google Scholar 

  22. Fernandez LP, Lopez-Marquez A, Martinez AM, Gomez-Lopez G, Santisteban P. New insights into FoxE1 functions: identification of direct FoxE1 targets in thyroid cells. PLoS One. 2013;8:e62849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weisenberger DJ, Trinh BN, Campan M, et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res. 2008;36:4689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baylin SB, Jones PA. A decade of exploring the cancer epigenome: biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Landa I, Ruiz-Llorente S, Montero-Conde C, et al. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet. 2009;5:e1000637.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mond M, Bullock M, Yao Y, Clifton-Bligh RJ, Gilfillan C, Fuller PJ. Somatic mutations of FOXE1 in papillary thyroid cancer. Thyroid. 2015;25:904–10.

    Article  CAS  PubMed  Google Scholar 

  27. Kohler A, Chen B, Gemignani F, et al. Genome-wide association study on differentiated thyroid cancer. J Clin Endocrinol Metab. 2013;98:E1674–81.

    Article  PubMed  Google Scholar 

  28. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  29. Noreen F, Roosli M, Gaj P, et al. Modulation of age- and cancer-associated DNA methylation change in the healthy colon by aspirin and lifestyle. J Natl Cancer Inst. 2014;106:123.

    Article  Google Scholar 

Download references

Acknowledgments

We thank K. Oda, M. Kasagi, and T. Kawano for their technical assistance. This work was supported in part by the following grants and foundations: Japan Science and Technology Agency (JST), Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research (Grant Nos. 24592005, 25461953, 25861199, 25861200, and 26861085), Japan Science and Technology Agency (JSTA) (A-step grant no. AS242Z03987P), the Founding Program for Next Generation World-Leading Researchers (LS094), and the Daiwa Securities Health Foundation.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koshi Mimori MD, PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 9 kb)

Supplementary material 2 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimachi, K., Matsumura, T., Shimamura, T. et al. Aberrant Methylation of FOXE1 Contributes to a Poor Prognosis for Patients with Colorectal Cancer. Ann Surg Oncol 23, 3948–3955 (2016). https://doi.org/10.1245/s10434-016-5289-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-016-5289-x

Keywords

Navigation