Skip to main content

Advertisement

Log in

Methylation of the Tumor Suppressor Genes HIC1 and RassF1A Clusters Independently From the Methylation of Polycomb Target Genes in Colon Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Methylation changes within tumor suppressor (TS) genes or polycomb group target (PcG) genes alter cell fates. Chromatin associated with PcG targets is bivalent in stem cells, while TS genes are not normally bivalent. PcG target methylation changes have been identified in tumor stem cells, and abnormal methylation is found in TS genes in cancers. If the epigenetic states of genes influence DNA methylation, then methylation of PcG targets and TS genes may evolve differently during cancer development. More importantly, methylation changes may be part of a sequence in tumorigenesis.

Methods

Chromatin and methylation states of 4 PcG targets and 2 TS genes were determined in colon cancer cells. The methylation states were also detected in 100 pairs of colon cancer samples. Principle component analysis (PCA) was used to reveal whether TS methylation or PcG methylation was the main methylation change associated with colon cancers.

Results

Chromatin and methylation states differ in colon cancer cell lines. The methylation states within PcG targets clustered independently from the methylation states in TS genes, a finding we previously reported in liver cancers. PCA in colon cancers revealed the strongest association with methylation changes in 2 TS genes, HIC1 and RassF1A. Loss of HIC1 methylation correlated with decreased tumor migration.

Conclusions

PcG and TS methylation states cluster independently from each other. The deduced principle component correlated better with TS methylation than PcG methylation in colon cancer. Abnormal methylation changes may represent a sequential biomarker profile to identify developing colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature. 2012;487:249–53.

    Article  CAS  PubMed  Google Scholar 

  2. Bibikova M, Chudin E, Wu B, Zhou L, Garcia EW, Liu Y, et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res. 2006;16:1075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol. 2013;14:211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yusa A, Miyazaki K, Kimura N, Izawa M, Kannagi R. Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells. Cancer Res. 2010;70:4064–73.

    Article  CAS  PubMed  Google Scholar 

  5. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6:107–16.

    Article  CAS  PubMed  Google Scholar 

  6. Hsiao SH, Huang TH, Leu YW. Excavating relics of DNA methylation changes during the development of neoplasia. Semin Cancer Biol. 2009;19:198–208.

    Article  CAS  PubMed  Google Scholar 

  7. Leu YW, Huang TH, Hsiao SH. Epigenetic reprogramming of mesenchymal stem cells. Adv Exp Med Biol. 2013;754:195–211.

    Article  CAS  PubMed  Google Scholar 

  8. Baylin SB. Stem cells, cancer, and epigenetics. In: StemBook. Cambridge: Harvard Stem Cell Institute; 2008.

  9. Hsiao SH, Lee KD, Hsu CC, Tseng MJ, Jin VX, Sun WS, et al. DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination. Biochem Biophys Res Commun. 2010;400:305–12.

    Article  CAS  PubMed  Google Scholar 

  10. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20:320–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012;151:206–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 2010;7:299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell. 2004;118:409–18.

    Article  CAS  PubMed  Google Scholar 

  14. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.

    Article  CAS  PubMed  Google Scholar 

  15. Surface LE, Thornton SR, Boyer LA. Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell. 2010;7:288–98.

    Article  CAS  PubMed  Google Scholar 

  16. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4.

    Article  CAS  PubMed  Google Scholar 

  17. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94.

    Article  CAS  PubMed  Google Scholar 

  18. Vastenhouw NL, Zhang Y, Woods IG, Imam F, Regev A, Liu XS, et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature. 2010;464:922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Balch C, Nephew KP, Huang TH, Bapat SA. Epigenetic “bivalently marked” process of cancer stem cell-driven tumorigenesis. Bioessays. 2007;29:842–5.

    Article  PubMed  Google Scholar 

  21. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39:237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gebhard C, Schwarzfischer L, Pham TH, Schilling E, Klug M, Andreesen R, Rehli M. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res. 2006;66:6118–28.

    Article  CAS  PubMed  Google Scholar 

  24. Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z, et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 2008;68:8954–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300:489–92.

    Article  CAS  PubMed  Google Scholar 

  26. Teng IW, Hou PC, Lee KD, Chu PY, Yeh KT, Jin VX, et al. Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res. 2011;71:4653–63.

    Article  CAS  PubMed  Google Scholar 

  27. Eggers H, Steffens S, Grosshennig A, Becker JU, Hennenlotter J, Stenzl A, et al. Prognostic and diagnostic relevance of hypermethylated in cancer 1 (HIC1) CpG island methylation in renal cell carcinoma. Int J Oncol. 2012;40:1650–8.

    CAS  PubMed  Google Scholar 

  28. Pehlivan S, Artac M, Sever T, Bozcuk H, Kilincarslan C, Pehlivan M. Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer. Cancer Genet Cytogenet. 2010;201:128–32.

    Article  CAS  PubMed  Google Scholar 

  29. Pan J, Chen J, Zhang B, Chen X, Huang B, Zhuang J, et al. Association between RASSF1A promoter methylation and prostate cancer: a systematic review and meta-analysis. PLoS One. 2013;8:e75283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Dis Mark. 2007;23:73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen SP, Wu CC, Huang SY, Kang JC, Chiu SC, Yang KL, Pang CY. beta-catenin and K-ras mutations and RASSF1A promoter methylation in Taiwanese colorectal cancer patients. Genet Test Mol Biomark. 2012;16:1277–81.

    Article  CAS  Google Scholar 

  32. Lee KD, Pai MY, Hsu CC, Chen CC, Chen YL, Chu PY, et al. Targeted Casp8AP2 methylation increases drug resistance in mesenchymal stem cells and cancer cells. Biochem Biophys Res Commun. 2012;422:578–85.

    Article  CAS  PubMed  Google Scholar 

  33. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data. Bioinformatics. 2001;17:763–74.

    Article  CAS  PubMed  Google Scholar 

  35. Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, Jones PA. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther. 2005;4:1515–20.

    Article  CAS  PubMed  Google Scholar 

  36. Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS, Huang TH. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res. 2003;63:6110–5.

    CAS  PubMed  Google Scholar 

  37. Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ, Diaz NM, et al. Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res. 2006;12:6626–36.

    Article  CAS  PubMed  Google Scholar 

  38. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor JM. Kendall’s and Spearman’s correlation coefficients in the presence of a blocking variable. Biometrics. 1987;43:409–16.

    Article  CAS  PubMed  Google Scholar 

  40. Zurita M, Lara PC, del Moral R, Torres B, Linares-Fernández JL, Arrabal SR, et al. Hypermethylated 14-3-3-sigma and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer. 2010;10:217.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pedersen PA, Kristensen FB. [The Danish Medical Statistics and Danish practical research]. Ugeskr Laeger. 1990;152:828–9.

    CAS  PubMed  Google Scholar 

  42. Klein JP. Survival analysis methods in cancer studies. Cancer Treat Res. 2002;113:37–57.

    Article  PubMed  Google Scholar 

  43. Malinge S, Chlon T, Dore LC, Ketterling RP, Tallman MS, Paietta E, et al. Development of acute megakaryoblastic leukemia in Down syndrome is associated with sequential epigenetic changes. Blood. 2013;122:e33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sandhu R, Roll JD, Rivenbark AG, Coleman WB. Dysregulation of the epigenome in human breast cancer: contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. Am J Pathol. 2015;185:282–92.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Wallace AD, Du P, Kibbe WA, Jafari N, Xie H, et al. DNA methylation alterations in response to pesticide exposure in vitro. Environ Mol Mutagen. 2012;53:542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Y.W.L., S.H.H., P.Y.L., and Y.L.C. were supported by Changhua Christian Hospital, Taiwan (100-CCH-KMU-007). Y.W.L., S.H.H., and P.Y.C. were supported by NSC Taiwan (100-2320-B-194-001, 101-2320-B-194-001, and 100-2321-B-750-001). Y.W.L. and K.D.L. were supported by MoST, Taiwan (103-2314-B-182A-090). Y.W.L. and S.H.H. were supported by MoST (NSC 102-2320-B-194-003-MY3) and NHRI (NHRI-EX102-10259NI), Taiwan.

Disclosures

The authors declare that they have no commercial interests in the subject of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Wei Leu PhD.

Additional information

Hong-Chang Chen and Hsuan-Yuan Huang have contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HC., Huang, HY., Chen, YL. et al. Methylation of the Tumor Suppressor Genes HIC1 and RassF1A Clusters Independently From the Methylation of Polycomb Target Genes in Colon Cancer. Ann Surg Oncol 24, 578–585 (2017). https://doi.org/10.1245/s10434-015-5024-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-5024-z

Keywords

Navigation