Annals of Surgical Oncology

, Volume 23, Issue 3, pp 919–927 | Cite as

A High RORγT/CD3 Ratio is a Strong Prognostic Factor for Postoperative Survival in Advanced Colorectal Cancer: Analysis of Helper T Cell Lymphocytes (Th1, Th2, Th17 and Regulatory T Cells)

  • Naohiro Yoshida
  • Tetsushi KinugasaEmail author
  • Hiroaki Miyoshi
  • Kensaku Sato
  • Kotaro Yuge
  • Takafumi Ohchi
  • Shinya Fujino
  • Sachiko Shiraiwa
  • Mitsuhiro Katagiri
  • Yoshito Akagi
  • Koichi Ohshima
Colorectal Cancer



Tumor-infiltrating lymphocytes (TILs), part of the host immune response, have been widely reported as influential factors in the tumor microenvironment for the clinical outcome of colorectal cancer (CRC). However, the network of helper T cells is very complex, and which T-cell subtypes affect the progression of CRC and postoperative prognosis remains unclear. This study investigated the expression of several subtypes of TILs including T helper type 1 (Th1), Th2, Th17, and regulatory T (Treg) cells to determine their correlation with clinicopathologic features and postoperative prognosis.


The study investigated the expression of TILs using immunohistochemistry of tissue microarray samples for 199 CRC patients. The number of each T-cell subtype infiltrating tumors was counted using ImageJ software. The relationship between TIL marker expression, clinicopathologic features, and prognosis was analyzed.


A high RORγT/CD3 ratio (Th17 ratio) was significantly correlated with lymph node metastasis (p = 0.002), and a high of Foxp3/CD3 ratio (Treg ratio) was correlated with tumor location in the colon (p = 0.04), as shown by the Chi square test. In multivariate analysis, a high RORγT/CD3 ratio was the only independent prognostic factor for overall survival (p = 0.04; hazard ratio [HR], 1.84; 95 % confidence interval [CI] 1.02–3.45).


This study confirmed a high RORγT/CD3 ratio as a strong prognostic marker for postoperative survival. The immunohistochemistry results suggest that Th17 may affect lymph node metastasis in CRC. If new immunotherapies reducing Th17 expression are established, they may improve the efficiency of cancer treatment and prolong the survival of patients with CRC.


Overall Survival Th17 Cell Tumor Immunity JPEG Image Postoperative Prognosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen J, Chen Z. The effect of immune microenvironment on the progression and prognosis of colorectal cancer. Med Oncol 2014; 31:82. doi: 10.1007/s12032-014-0082-9.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu Z, Huang Q, Liu D, Chu D, Tao K, Wang W. Presence of FOXP3+ Treg cells is correlated with colorectal cancer progression. Int J Exp Med 2014; 7:1781-1785.Google Scholar
  3. 3.
    Betts G, Jones E, Junaid S, El-Shanawany T, Scurr M, Mizen P., et al. Suppression of tumour-specific CD4+ T cells by regulatory T cells is associated with progression of human colorectal cancer. Gut 2012; 61:1163-1171.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Tougeron D, Maby P, Elie N, Fauquembergue É, Le-Pessot F, Cornic M, et al. Regulatory T lymphocytes are associated with less aggressive histologic features in microsatellite-unstable colorectal cancers. PLoS One 2013; 8:e61001.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Yoon HH, Orrock JM, Foster NR, Sargent DJ, Smyrk TC, Sinicrope FA. Prognostic impact of FoxP3+ regulatory T cells in relation to CD8+ T lymphocyte density in human colon carcinomas. PLoS One 2012; 7:e42274.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Nakagawa K, Tanaka K, Hommma Y, Nojiri K, Kumamoto T, Takeda K, et al. Low infiltration of peritumoral regulatory T cells predicts worse outcome following resection of colorectal liver. Ann Surg Oncol. 2014. doi: 10.1245/s10434-014-3974-1.PubMedCentralGoogle Scholar
  7. 7.
    Chaput N, Louafi S, Bardier A, Charlotte, F., Vaillant, J. C., Ménégaux, F., et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 2009; 58:520-529.CrossRefPubMedGoogle Scholar
  8. 8.
    Ramírez MF, Huitink JM, Cata JP. Perioperative Clinical interventions that modify the immune response in cancer patients. Anesthesiology 2013; 3:133-139.Google Scholar
  9. 9.
    Kimura A, Kishimoto T. IL-6: Regulator of Treg/Th17 balance. Eur J Immunol 2010; 40:1830-1835.CrossRefPubMedGoogle Scholar
  10. 10.
    Braga WMT, Da Silva BR, De Carvalho AC, Maekawa, Y. H., Bortoluzzo, A. B., Rizzatti, E. G., et al. FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4+ T regulatory cells. Cancer Immunol Immunother 2014; 63:1189-1197.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Romagnani S. Th1/Th2 Cells. Inflamm Bowel Dis 1999; 5:285-294.CrossRefPubMedGoogle Scholar
  12. 12.
    Dillon PM, Olson WC, Czarkowski A, Petroni, G. R., Smolkin, M., Grosh, W. W., et al. A melanoma helper peptide vaccine increases Th1 cytokine production by leukocytes in peripheral blood and immunized lymph nodes. J Immunother Cancer 2014; 2:23.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Netea MG, Van der Meer JW, Sutmuller RP, Adema GJ, Kullberg BJ. From the Th1/Th2 paradigm towards a toll-like receptor/T-helper bias. Antimicrob Agents Chemother 2005; 49:3991-3996.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Chung AS, Wu X, Zhuang G, Ngu, H., Kasman, I., Zhang, J., et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 2013; 19:1114-1123.CrossRefPubMedGoogle Scholar
  15. 15.
    Wilson NJ, Boniface K, Chan JR, McKenzie, B. S., Blumenschein, W. M., Mattson, J. D., et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8:950-957.CrossRefPubMedGoogle Scholar
  16. 16.
    Whiteside TL. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother 2014; 63:67-72.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Kim M, Grimmig T, Grimm M, Lazariotou, M., Meier, E., Rosenwald, A., et al. Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer. PLoS One 2013; 8:e53630.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol 2012; 22:327-334.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen, T., Mauger, S., Bindea, G., et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res 2011; 71:1263-1271.CrossRefPubMedGoogle Scholar
  20. 20.
    Boissiere-Michot F, Lazennec G, Frugier H, Jarlier, M., Roca, L., Duffour, J., et al. Characterization of an adaptive immune response in microsatellite-instable colorectal cancer. Oncoimmunology 2014; 3:e29256.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Zhuo C, Li Z, Xu Y, Wang, Y., Li, Q., Peng, J., et al. Higher FOXP3-TSDR demethylation rates in adjacent normal tissue in patients with colon cancer were associated with worse survival. Mol Cancer 2014; 13:153.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Japanese Society for the Cancer of the Colon and Rectum. Japanese classification of colorectal carcinoma (2nd English edition). Tokyo: Kanehara & Co., Ltd.; 2009.Google Scholar
  23. 23.
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9:671-675.CrossRefPubMedGoogle Scholar
  24. 24.
    Watanabe T, Itabashi M, Shimada Y, Tanaka, S., Ito, Y., Ajioka, Y., et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2010 for the treatment of colorectal cancer. Int J Clin Oncol 2012; 17:1-29.CrossRefPubMedGoogle Scholar
  25. 25.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313:1960-1964.CrossRefPubMedGoogle Scholar
  26. 26.
    Kjaer-Frifeldt S, Lindebjerg J, Brünner N, Garm Spindler, K. L., & Jakobsen, A. Limitations of tissue micro array in Duke’s B colon cancer. APMIS 2012; 120:819-827.CrossRefPubMedGoogle Scholar
  27. 27.
    Perez-Mazliah D, Langhorne J. CD4 T-cell subsets in malaria: TH1/TH2 revisited. Front Immunol 2015;5:671. doi: 10.3389/fimmu.2014.00671.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Keerthivasan S, Aghajani K, Dose M, Molinero, L., Khan, M. W., Venkatesvaran, V., et al. Wnt/β-catenin signaling in T-cells drives epigenetic imprinting of pro-inflammatory properties and promotes colitis and colon cancer. Sci Transl Med. 2014. doi: 10.1126/scitranslmed.3007607.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Zhang B, Rong G, Wei H, Zhang, M., Bi, J., Ma, L., et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun 2008; 374:533-537.CrossRefPubMedGoogle Scholar
  30. 30.
    Kryczek I, Banerjee M, Cheng P, Vatan, L., Szeliga, W., Wei, S., et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 2009; 114:1141-1149.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    De Simone V, Franze E, Ronchetti G, Colantoni, A., Fantini, M. C., Di Fusco, D., et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2014. doi: 10.1038/onc.2014.286.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Maruyama T, Kono K, Mizukami Y, Kawaguchi, Y., Mimura, K., Watanabe, M., et al. Distribution of Th17 cells and FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, tumor-draining lymph nodes and peripheral blood lymphocytes in patients with gastric cancer. Cancer Sci 2010; 101:1947-1954.CrossRefPubMedGoogle Scholar
  33. 33.
    Atsumi T, Singh R, Sabharwal L, Bando, H., Meng, J., Arima, Y., et al. Inflammation amplifier, a new paradigm in cancer biology. Cancer Res 2014; 74:8-14.CrossRefPubMedGoogle Scholar
  34. 34.
    Vaknin-Dembinsky A, Konstantin B, Weiner HL. IL-23 Is Increased in Dendritic Cells in Multiple Sclerosis and Down-Regulation of IL-23 by Antisense Oligos Increases Dendritic Cell IL-10 Production. J Immunol 2006; 176:7768-7774.CrossRefPubMedGoogle Scholar
  35. 35.
    Omrane I, Baroudi O, Bougatef K, Mezlini, A., Abidi, A., Medimegh, I., et al. Significant association between IL23R and IL17F polymorphisms and clinical features of colorectal cancer. Immunol Lett 2014; 158:189-194.CrossRefPubMedGoogle Scholar
  36. 36.
    Hou N, Zhang X, Zhao L, Zhao X, Li Z, Song T, Huang C. A novel chronic stress-induced shift in the Th1 to Th2 response promotes colon cancer growth. Biochem Biophys Res Commun 2013; 439:471-476.CrossRefPubMedGoogle Scholar
  37. 37.
    Figueiredo JC, Hsu L, Hutter CM, Lin, Y., Campbell, P. T., Baron, J. A., et al. Genome-wide diet-gene interaction analyses for risk of colorectal cancer. PLoS Genet 2014; 10:e1004228.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Lee WS, Park S, Lee WY, Yun SH, Chun HK. Clinical impact of tumor-infiltrating lymphocytes for survival in stage II colon cancer. Cancer 2010; 116:5188-5199.CrossRefPubMedGoogle Scholar
  39. 39.
    Salama P, Phillips M, Grieu F, Morris, M., Zeps, N., Joseph, D., et al. Tumor-Infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 2009; 27:186-192.CrossRefPubMedGoogle Scholar
  40. 40.
    Correale P, Rotundo MS, Del Vecchio MT, Remondo, C., Migali, C., Ginanneschi, C., et al. Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother 2010; 33:435-441.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2015

Authors and Affiliations

  • Naohiro Yoshida
    • 1
  • Tetsushi Kinugasa
    • 1
    Email author
  • Hiroaki Miyoshi
    • 2
  • Kensaku Sato
    • 2
  • Kotaro Yuge
    • 1
  • Takafumi Ohchi
    • 1
  • Shinya Fujino
    • 1
  • Sachiko Shiraiwa
    • 1
  • Mitsuhiro Katagiri
    • 1
  • Yoshito Akagi
    • 1
  • Koichi Ohshima
    • 2
  1. 1.Department of SurgeryKurume University School of MedicineKurume-shiJapan
  2. 2.Department of PathologyKurume University School of MedicineKurumeJapan

Personalised recommendations