Skip to main content

Advertisement

Log in

Identification of microRNAs in Nipple Discharge as Potential Diagnostic Biomarkers for Breast Cancer

  • Breast Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Intraductal breast cancer is generally difficult to diagnose because of a lack of an efficient method for detection. The purpose of this study was to reveal and validate the differential expression of microRNAs (miRNAs) in nipple discharge from intraductal papilloma patients and identify miRNAs as novel potential biomarkers for primary breast cancer.

Methods

Nipple discharge samples were collected from three intraductal carcinoma breast cancer patients and three intraductal papilloma patients. The initial screening of miRNA expression was performed with an Axon GenePix 4000B microarray scanner using a novel approach to label miRNAs. The expression levels of the miRNAs selected from the initial screening were further examined by quantitative real-time polymerase chain reaction (qRT-PCR) in 21 validation samples (8 carcinomas and 13 benign tumors). An independent t test was used to detect significant correlations between the miRNA expression levels and breast cancer.

Results

Microarray profiling demonstrated that three miRNAs were markedly up-regulated and three miRNAs were down-regulated in the intraductal carcinoma breast cancer patients compared to the papilloma group. The qRT-PCR analysis further verified that four miRNAs (miR-4484, miR-K12-5-5p, miR-3646, and miR-4732-5p) might serve as potential tumor biomarkers for breast cancer detection.

Conclusion

The novel approach of using a microarray scanner is applicable for studying biomarkers in nipple discharge containing small amounts of miRNA. miRNAs could serve as potential tumor biomarkers that can assist in breast cancer screening. Up-regulation of miR-4484, miR-K12-5-5p, and miR-3646 in nipple discharge may be a predictor of malignant breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64:52–62.

    Article  PubMed  Google Scholar 

  2. Vargas HI, Romero L, Chlebowski RT. Management of bloody nipple discharge. Curr Treat Options Oncol. 2002;3:157–61.

    Article  PubMed  Google Scholar 

  3. Montroni I, Santini D, Zucchini G, et al. Nipple discharge: is its significance as a risk factor for breast cancer fully understood? Observational study including 915 consecutive patients who underwent selective duct excision. Breast Cancer Res Treat. 2010;123:895–900.

    Article  PubMed  Google Scholar 

  4. Louie LD, Crowe JP, Dawson AE, et al. Identification of breast cancer in patients with pathologic nipple discharge: does ductoscopy predict malignancy? Am J Surg. 2006;192:530–3.

    Article  PubMed  Google Scholar 

  5. Dinkel HP, Trusen A, Gassel AM, et al. Predictive value of galactographic patterns for benign and malignant neoplasms of the breast in patients with nipple discharge. Br J Radiol. 2000;73(871):706–14.

    Article  PubMed  CAS  Google Scholar 

  6. Sauter ER, Ehya H, Babb J, et al. Biological markers of risk in nipple aspirate fluid are associated with residual cancer and tumour size. Br J Cancer. 1999;81:1222–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  PubMed  CAS  Google Scholar 

  8. Pasquinelli AE, Hunter S, Bracht J. MicroRNAs: a developing story. Curr Opin Genet Dev. 2005;15:200–5.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang HH, Wang XJ, Li GX, Yang E, Yang NM. Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J Gastroenterol. 2007;13:2883–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Wu W, Sun M, Zou GM, Chen J. MicroRNA and cancer: current status and prospective. Int J Cancer. 2007;120:953–60.

    Article  PubMed  CAS  Google Scholar 

  11. Visone R, Petrocca F, Croce CM. Micro-RNAs in gastrointestinal and liver disease. Gastroenterology. 2008;135:1866–9.

    Article  PubMed  CAS  Google Scholar 

  12. Iorio MV, Casalini P, Piovan C, et al. microRNA-205 regulates HER3 in human breast cancer. Cancer Res. 2009;69:2195–200.

    Article  PubMed  CAS  Google Scholar 

  13. Garzon R, Heaphy CE, Havelange V, et al. MicroRNA 29b functions in acute myeloid leukemia. Blood. 2009;114:5331–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91:827–87.

    Article  PubMed  CAS  Google Scholar 

  15. Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010;28:341–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14:2588–92.

    Article  PubMed  CAS  Google Scholar 

  17. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 2009;112:55–9.

    Article  PubMed  CAS  Google Scholar 

  20. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251:499–505.

    Article  PubMed  Google Scholar 

  21. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One. 2010;5:e13735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.

    Article  PubMed  CAS  Google Scholar 

  23. Heneghan HM, Miller N, Kerin MJ. Systemic microRNAs: novel biomarkers for colorectal and other cancers? Gut. 2010;59:1002–4.

    Article  PubMed  CAS  Google Scholar 

  24. Park NJ, Zhou H, Elashoff D, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15:5473–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009;4:e6229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhu J, Li X, Kong X, et al. Testin is a tumor suppressor and prognostic marker in breast cancer. Cancer Sci. 2012;103:2092–101.

    Article  PubMed  CAS  Google Scholar 

  28. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhou L, Zhao YP, Liu WJ, et al. Circulating microRNAs in cancer: diagnostic and prognostic significance. Exp Rev Anticancer Ther. 2012;12:283–8.

    Article  CAS  Google Scholar 

  30. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  PubMed  CAS  Google Scholar 

  31. Pouladi N, Kouhsari SM, Feizi MH, Gavgani RR, Azarfam P. Overlapping region of p53/wrap53 transcripts: mutational analysis and sequence similarity with microRNA-4732-5p. Asian Pac J Cancer Prev. 2013;14:3503–7.

    Article  PubMed  Google Scholar 

  32. Chen J, Yao D, Li Y, et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Int J Mol Med. 2013;32:557–67.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Das K, Saikolappan S, Dhandayuthapani S. Differential expression of miRNAs by macrophages infected with virulent and avirulent Mycobacterium tuberculosis. Tuberculosis. 2013;93(suppl):S47–50.

    Article  PubMed  CAS  Google Scholar 

  34. Rogler A, Hoja S, Socher E, et al. Role of two single nucleotide polymorphisms in secreted frizzled related protein 1 and bladder cancer risk. Int J Clin Exp Pathol. 2013;6:1984–98.

    PubMed  PubMed Central  Google Scholar 

  35. Ward J, Kanchagar C, Veksler-Lublinsky I, et al. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci U S A. 2014;111:12169–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lu F, Stedman W, Yousef M, Renne R, Lieberman PM. Epigenetic regulation of Kaposi’s sarcoma–associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol. 2010;84:2697–706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lin YT, Kincaid RP, Arasappan D, Dowd SE, Hunicke-Smith SP, Sullivan CS. Small RNA profiling reveals antisense transcription throughout the KSHV genome and novel small RNAs. RNA. 2010;16:1540–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Independent Innovation Foundation of Shandong University (Grant IIFSDU-2012TS159 to Kai Zhang), the National Natural Science Foundation of China (Grant 81402192 to Jiang Zhu), and partially supported by the National Institute of Health (Grant R01CA129015 to Hsin-Sheng Yang). We thank the members of Department of Breast Surgery, Qilu Hospital of Shandong University, for their advice on the research.

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Zhu MD, PhD or Rong Ma MD, PhD.

Additional information

Kai Zhang and Song Zhao have contributed equally to this article, and both should be considered first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Receiver operating curve for the diagnosis of miRNAs in nipple discharge. (TIFF 362 kb)

10434_2015_4586_MOESM3_ESM.tif

Sequencing results of RT-PCR product. (a-e) Sequencing results of (a) miR-3646, (b)miR-4484, (c) miRK12-5-5p, (d) miR-4732-5p and (e) miR-4687-3p. (TIFF 3202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zhao, S., Wang, Q. et al. Identification of microRNAs in Nipple Discharge as Potential Diagnostic Biomarkers for Breast Cancer. Ann Surg Oncol 22 (Suppl 3), 536–544 (2015). https://doi.org/10.1245/s10434-015-4586-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4586-0

Keywords

Navigation