Skip to main content

Advertisement

Log in

Noninvasive Diagnosis and Evaluation of Curative Surgery for Gastric Cancer by Using NMR-based Metabolomic Profiling

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Mass screening for gastric cancer (GC), particularly using endoscopy, may not be the most practical approach as a result of its high cost, lack of acceptance, and poor availability. Thus, novel markers that can be used in cost-effective diagnosis and noninvasive screening for GC are needed.

Methods

A total of 154 urine samples from GC patients and healthy individuals and 30 pairs of matched tumor and normal stomach tissues were collected. Multivariate analysis was performed on urinary and tissue metabolic profiles acquired using 1H nuclear magnetic resonance and 1H high-resolution magic angle spinning spectroscopy, respectively. In addition, metabolic profiling of urine from GC patients after curative surgery was performed.

Results

Multivariate statistical analysis showed significant separation in the urinary and tissue data of GC patients and healthy individuals. The metabolites altered in the urine of GC patients were related to amino acid and lipid metabolism, consistent with changes in GC tissue. In the external validation, the presence of GC (early or advanced) from the urine model was predicted with high accuracy, which showed much higher sensitivity than carbohydrate antigen 19-9 and carcinoembryonic antigen. Furthermore, 4-hydroxyphenylacetate, alanine, phenylacetylglycine, mannitol, glycolate, and arginine levels were significantly correlated with cancer T stage and, together with hypoxanthine level, showed a recovery tendency toward healthy controls in the postoperative samples compared to the preoperative samples.

Conclusions

An urinary metabolomics approach may be useful for the effective diagnosis of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Ono H, Kondo H, Gotoda T, et al. Endoscopic mucosal resection for treatment of early gastric cancer. Gut. 2001;48:225–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Jeong OH, Park YK. Clinicopathological features and surgical treatment of gastric cancer in South Korea: the results of 2009 nationwide survey on surgically treated gastric cancer patients. J Gastric Cancer. 2011;11:69–77.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Leung WK, Wu MS, Kakugawa Y, et al. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol. 2008;9:279–87.

    Article  PubMed  Google Scholar 

  5. Hao Y, Yu Y, Wang L, et al. IPO-38 is identified as a novel serum biomarker of gastric cancer based on clinical proteomics technology. J Proteome Res. 2008;7:3668–77.

    Article  CAS  PubMed  Google Scholar 

  6. Chan DC, Chen CJ, Chu HC, et al. Evaluation of serum amyloid A as a biomarker for gastric cancer. Ann Surg Oncol. 2007;14:84–93.

    Article  PubMed  Google Scholar 

  7. Kang X, Zhang L, Sun J, et al. Prohibition: a potential biomarker for tissue-based detection of gastric cancer. J Gastroenterol. 2008;43:618–25.

    Article  CAS  PubMed  Google Scholar 

  8. Abbaszadegan MR, Moaven O, Sima HR, et al. p16 promoter hypermethylation: a useful serum marker for early detection of gastric cancer. World J Gastroenterol. 2008;14:2055–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wu H, Xue R, Tang Z, et al. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem. 2010;396:1385–95.

    Article  CAS  PubMed  Google Scholar 

  10. Pasikanti KK, Esuvaranathan K, Ho PC, et al. Noninvasive urinary metabonomic diagnosis of human bladder cancer. J Proteome Res. 2010;9:2988–95.

    Article  CAS  PubMed  Google Scholar 

  11. Kim K, Aronov P, Zakharkin SO, et al. Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol Cell Proteomics. 2009;8:558–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Qiu Y, Cai G, Su M, et al. Urinary metabonomic study on colorectal cancer. J Proteome Res. 2010;9:1627–34.

    Article  CAS  PubMed  Google Scholar 

  13. Slupsky CM, Steed H, Wells TH, et al. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res. 2010;16:5835–41.

    Article  CAS  PubMed  Google Scholar 

  14. Yu L, Aa J, Xu J, et al. Metabolomic phenotype of gastric cancer and precancerous stages based on gas chromatography time-of-flight mass spectrometry. J Gastroenterol Hepatol. 2011;26:1290–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ikeda A, Nishiumi S, Shinohara M, et al. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed Chromatogr. 2012;26:548–58.

    Article  CAS  PubMed  Google Scholar 

  16. Hirayama A, Kami K, Sugimoto M, et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69:4918–25.

    Article  CAS  PubMed  Google Scholar 

  17. Aa J, Yu L, Sun M, et al. Metabolic features of the tumor microenvironment of gastric cancer and the link to the systemic macroenvironment. Metabolomics. 2012;8:164–73.

    Article  CAS  Google Scholar 

  18. Hu JD, Tang HQ, Zhang Q, et al. Prediction of gastric cancer metastasis through urinary metabolomic investigation using GC/MS. World J Gastroenterol. 2011;17:727–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Marrelli D, Roviello F, De Stefano A, et al. Prognostic significance of CEA, CA 19-9 and CA 72-4 preoperative serum levels in gastric carcinoma. Oncology. 1999;57:55–62.

    Article  CAS  PubMed  Google Scholar 

  20. Marrelli D, Pinto E, De Stefano A, et al. Clinical utility of CEA, CA 19-9, and CA 72-4 in the follow-up of patients with resectable gastric cancer. Am J Surg. 2001;181:16–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005;5:886–97.

    Article  CAS  PubMed  Google Scholar 

  22. Costello LC, Franklin RB. “Why do tumour cells glycolyse?” From glycolysis through citrate to lipogenesis. Mol Cell Biochem. 2005;280:1–8.

    Article  CAS  PubMed  Google Scholar 

  23. Tessem MB, Swanson MG, Keshari KR, et al. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med. 2008;60:510–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lind DS. Arginine and cancer. J Nutr. 2004;134:2837S–41S.

    CAS  PubMed  Google Scholar 

  25. Leaf CD, Wishnok JS, Tannenbaum SR. l-Arginine is a precursor for nitrate biosynthesis in humans. Biochem Biophys Res Commun. 1989;163:1032–7.

    Article  CAS  PubMed  Google Scholar 

  26. McKnight GM, Duncan CW, Leifert C, et al. Dietary nitrate in man: friend or foe? Br J Nutr. 1999;81:349–58.

    Article  CAS  PubMed  Google Scholar 

  27. Goto T, Haruma K, Kitadai Y, et al. Enhanced expression of inducible nitric oxide synthase and nitrotyrosine in gastric mucosa of gastric cancer patients. Clin Cancer Res. 1999;5:1411–5.

    CAS  PubMed  Google Scholar 

  28. Chan EC, Koh PK, Mal M, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. 2009;8:352–61.

    Article  CAS  PubMed  Google Scholar 

  29. Longnus SL, Wambolt RB, Barr RL, et al. Regulation of myocardial fatty acid oxidation by substrate supply. Am J Physiol Heart Circ Physiol. 2001;281:H1561–7.

    CAS  PubMed  Google Scholar 

  30. Lysiak W, Toth PP, Suelter CH, et al. Quantitation of the efflux of acylcarnitines from rat heart, brain, and liver mitochondria. J Biol Chem. 1986;261:13698–703.

    CAS  PubMed  Google Scholar 

  31. Lysiak W, Lilly K, DiLisa F, et al. Quantitation of the effect of l-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. J Biol Chem. 1988;263:1151–6.

    CAS  PubMed  Google Scholar 

  32. Fromm HJ, Hargrove M. Essentials of biochemistry. Berlin: Springer; 2012. p. 257–77.

    Book  Google Scholar 

  33. Beevi Beevi SS, Rasheed MH, Geetha A. Evidence of oxidative and nitrosative stress in patients with cervical squamous cell carcinoma. Clin Chim Acta. 2007;375:119–23.

    Article  Google Scholar 

  34. Kasapović J, Pejić S, Todorović A, et al. Antioxidant status and lipid peroxidation in the blood of breast cancer patients of different ages. Cell Biochem Funct. 2008;26:723–30.

    Article  PubMed  Google Scholar 

  35. Wu H, Xue R, Tang Z, et al. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem. 2010;396:1385–95.

    Article  CAS  PubMed  Google Scholar 

  36. Vannoni D, Porcelli B, Caldarone R, et al. Purine metabolism in human tumors. Medicina (Firenze). 1989;9:51–4.

    CAS  PubMed  Google Scholar 

  37. Wu H, Xue R, Dong L, et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal Chim Acta. 2009;648:98–104.

    Article  CAS  PubMed  Google Scholar 

  38. Lindahl R, Petersen DR. Lipid aldehyde oxidation as a physiological role for class 3 aldehyde dehydrogenases. Biochem Pharmacol. 1991;41:1583–7.

    Article  CAS  PubMed  Google Scholar 

  39. Yoo BC, Kong SY, Jang SG, et al. Identification of hypoxanthine as a urine marker for non-Hodgkin lymphoma by low-mass-ion profiling. BMC Cancer. 2010;10:55.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Linder N, Haglund C, Lundin M, et al. Decreased xanthine oxidoreductase is a predictor of poor prognosis in early-stage gastric cancer. J Clin Pathol. 2006;59:965–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning, Korea (2010-0024825, NRF-2010-0019394, 2013M3A9B6046418, and Creative Allied Project (CAP)), the Korea Institute of Oriental Medicine (K14281), and the Korea Basic Science Institute (T33409).

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sungsoo Park MD, PhD or Geum-Sook Hwang PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J., Jung, Y., Bang, E.J. et al. Noninvasive Diagnosis and Evaluation of Curative Surgery for Gastric Cancer by Using NMR-based Metabolomic Profiling. Ann Surg Oncol 21 (Suppl 4), 736–742 (2014). https://doi.org/10.1245/s10434-014-3886-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3886-0

Keywords

Navigation