Skip to main content

Advertisement

Log in

Significance of Allelic Percentage of BRAF c.1799T > A (V600E) Mutation in Papillary Thyroid Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Somatic BRAF mutation is frequently observed in papillary thyroid carcinoma (PTC). Recent evidence suggests that PTCs are heterogeneous tumors containing a subclonal or oligoclonal occurrence of BRAF mutation. Conflicting results have been reported concerning the prognostic significance of the mutant allele frequency. Our present aim was to investigate the association between the percentage of BRAF c.1799T > A (p.Val600Glu) alleles and clinicopathological parameters in PTC.

Methods

Genomic DNA was extracted from fresh-frozen specimens obtained from 50 PTC patients undergoing total thyroidectomy. The BRAF mutation status was determined by Sanger sequencing. The percentage of mutant BRAF alleles was quantified by mass spectrometric genotyping, pyrosequencing, and competitive allele-specific TaqMan PCR (castPCR).

Results

Positive rate of BRAF mutation was 72 % by Sanger sequencing, 82 % by mass spectrometric genotying, and 84 % by pyrosequencing or castPCR. The average percentage of mutant BRAF alleles was 22.5, 31, and 30.7 %, respectively. There was a good correlation among three quantification methods (Spearman’s rho = 0.87–0.97; p < 0.0001). The mutant allele frequency was significantly correlated with tumor size (rho = 0.47–0.52; p < 0.01) and extrathyroidal invasion. The frequency showed no difference in pathological lymph node metastasis.

Conclusions

The percentage of mutant BRAF alleles is positively associated with tumor burden and extrathyroidal invasion in PTC. Relatively good correlations exist among mass spectrometric genotyping, pyrosequencing, and castPCR in quantification of mutant BRAF allele frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cramer JD, Fu P, Harth KC, Margevicius S, Wilhelm SM. Analysis of the rising incidence of thyroid cancer using the surveillance, epidemiology and end results national cancer data registry. Surgery. 2010;148:1147–52.

    Article  PubMed  Google Scholar 

  2. Husson O, Haak HR, van Steenbergen LN, et al. Rising incidence, no change in survival and decreasing mortality from thyroid cancer in The Netherlands since 1989. Endocr Relat Cancer. 2013;20:263–71.

    Article  PubMed  Google Scholar 

  3. Eustatia-Rutten CF, Corssmit EP, Biermasz NR, Pereira AM, Romijn JA, Smit JW. Survival and death causes in differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:313–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kapiteijn E, Schneider TC, Morreau H, Gelderblom H, Nortier JW, Smit JW. New treatment modalities in advanced thyroid cancer. Ann Oncol. 2012;23:10–8.

    Article  CAS  PubMed  Google Scholar 

  5. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62.

    Article  CAS  PubMed  Google Scholar 

  6. Mathur A, Moses W, Rahbari R, Khanafshar E, Duh QY, Clark O, et al. Higher rate of BRAF mutation in papillary thyroid cancer over time: a single-institution study. Cancer. 2011;117:4390–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wan PT, Garnett MJ, Roe SM, et al; Cancer Genome Project. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.

    Article  CAS  PubMed  Google Scholar 

  8. Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA. 2009;106:4519–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Li C, Lee KC, Schneider EB, Zeiger MA. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab. 2012;97:4559–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kim TH, Park YJ, Lim JA, Ahn HY, Lee EK, Lee YJ, et al. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer. 2012;118:1764–73.

    Article  CAS  PubMed  Google Scholar 

  11. Tufano RP, Teixeira GV, Bishop J, Carson KA, Xing M. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore). 2012;91:274–86.

    Article  CAS  PubMed  Google Scholar 

  12. Guerra A, Fugazzola L, Marotta V, Cirillo M, Rossi S, Cirello V, et al. A high percentage of BRAFV600E alleles in papillary thyroid carcinoma predicts a poorer outcome. J Clin Endocrinol Metab. 2012;97:2333–40.

    Article  CAS  PubMed  Google Scholar 

  13. Gandolfi G, Sancisi V, Torricelli F, Ragazzi M, Frasoldati A, Piana S, et al. Allele percentage of the BRAF V600E mutation in papillary thyroid carcinomas and corresponding lymph node metastases: no evidence for a role in tumor progression. J Clin Endocrinol Metab. 2013;98:E934–42.

    Article  PubMed  Google Scholar 

  14. MacConaill LE. Existing and emerging technologies for tumor genomic profiling. J Clin Oncol. 2013;31:1815–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cheng SP, Liu CL, Hsu YC, Chang YC, Huang SY, Lee JJ. Expression and biologic significance of adiponectin receptors in papillary thyroid carcinoma. Cell Biochem Biophys. 2013;65:203–10.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas RK, Baker AC, Debiasi RM, Winckler W, LaFramboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.

    Article  CAS  PubMed  Google Scholar 

  17. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kloos RT, Reynolds JD, Walsh PS, Wilde JI, Tom EY, Pagan M, et al. Does addition of BRAF V600E mutation testing modify sensitivity or specificity of the Afirma Gene Expression Classifier in cytologically indeterminate thyroid nodules? J Clin Endocrinol Metab. 2013;98:E761–8.

    Article  CAS  PubMed  Google Scholar 

  19. Frasca F, Nucera C, Pellegriti G, Gangemi P, Attard M, Stella M, et al. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer. 2008;15:191–205.

    Article  CAS  PubMed  Google Scholar 

  20. Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P, et al. Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 2009;94:1612–7.

    Article  CAS  PubMed  Google Scholar 

  21. Jeong D, Jeong Y, Park JH, Han SW, Kim SY, Kim YJ, et al. BRAF (V600E) mutation analysis in papillary thyroid carcinomas by peptide nucleic acid clamp real-time PCR. Ann Surg Oncol. 2013;20:759–66.

    Article  PubMed  Google Scholar 

  22. Lade-Keller J, Romer KM, Guldberg P, Riber-Hansen R, Hansen LL, Steiniche T, et al. Evaluation of BRAF mutation testing methodologies in formalin-fixed, paraffin-embedded cutaneous melanomas. J Mol Diagn. 2013;15:70–80.

    Article  CAS  PubMed  Google Scholar 

  23. Kim HS, Kim JO, Lee DH, Lee HC, Kim HJ, Kim JH, et al. Factors influencing the detection of the BRAF T1799A mutation in papillary thyroid carcinoma. Oncol Rep. 2011;25:1639–44.

    CAS  PubMed  Google Scholar 

  24. Virk RK, Van Dyke AL, Finkelstein A, Prasad A, Gibson J, Hui P, et al. BRAFV600E mutation in papillary thyroid microcarcinoma: a genotype-phenotype correlation. Mod Pathol. 2013;26:62–70.

    Article  CAS  PubMed  Google Scholar 

  25. Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 2005;65:4238–45.

    Article  CAS  PubMed  Google Scholar 

  26. Charles RP, Iezza G, Amendola E, Dankort D, McMahon M. Mutationally activated BRAF(V600E) elicits papillary thyroid cancer in the adult mouse. Cancer Res. 2011;71:3863–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Park SY, Park YJ, Lee YJ, Lee HS, Choi SH, Choe G, et al. Analysis of differential BRAF(V600E) mutational status in multifocal papillary thyroid carcinoma: evidence of independent clonal origin in distinct tumor foci. Cancer. 2006;107:1831–8.

    Article  CAS  PubMed  Google Scholar 

  28. Giannini R, Ugolini C, Lupi C, Proietti A, Elisei R, Salvatore G, et al. The heterogeneous distribution of BRAF mutation supports the independent clonal origin of distinct tumor foci in multifocal papillary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92:3511–6.

    Article  CAS  PubMed  Google Scholar 

  29. Jovanovic L, Delahunt B, McIver B, Eberhardt NL, Grebe SK. Most multifocal papillary thyroid carcinomas acquire genetic and morphotype diversity through subclonal evolution following the intra-glandular spread of the initial neoplastic clone. J Pathol. 2008;215:145–54.

    Article  CAS  PubMed  Google Scholar 

  30. Vasko V, Hu S, Wu G, Xing JC, Larin A, Savchenko V, et al. High prevalence and possible de novo formation of BRAF mutation in metastasized papillary thyroid cancer in lymph nodes. J Clin Endocrinol Metab. 2005;90:5265–9.

    Article  CAS  PubMed  Google Scholar 

  31. Xing M. BRAFV600E mutation and papillary thyroid cancer: chicken or egg? J Clin Endocrinol Metab. 2012;97:2295–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Aparicio S, Caldas C. The implications of clonal genome evolution for cancer medicine. N Engl J Med. 2013;368:842-51.

    Article  CAS  PubMed  Google Scholar 

  33. Guerra A, Sapio MR, Marotta V, Campanile E, Rossi S, Forno I, et al. The primary occurrence of BRAF(V600E) is a rare clonal event in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97:517–24.

    Article  CAS  PubMed  Google Scholar 

  34. Howell GM, Nikiforova MN, Carty SE, Armstrong MJ, Hodak SP, Stang M T, et al. BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Ann Surg Oncol. 2013;20:47–52.

    Article  PubMed  Google Scholar 

  35. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805:105–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431–5.

    Article  CAS  PubMed  Google Scholar 

  37. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98:E1852–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Translational Core Laboratories of National Translational Medicine and Clinical Trial Resource Center for technical assistance in MALDI-TOF MS experiments. This work was supported by the National Science Council of Taiwan (100-2314-B-195-001-MY3) and Mackay Memorial Hospital (MMH-10206 and MMH-E-102-10).

Disclosures

Shih-Ping Cheng, Yi-Chiung Hsu, Chien-Liang Liu, Tsang-Pai Liu, Ming-Nan Chien, Tao-Yeuan Wang, and Jie-Jen Lee have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Jen Lee MD, PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, SP., Hsu, YC., Liu, CL. et al. Significance of Allelic Percentage of BRAF c.1799T > A (V600E) Mutation in Papillary Thyroid Carcinoma. Ann Surg Oncol 21 (Suppl 4), 619–626 (2014). https://doi.org/10.1245/s10434-014-3723-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3723-5

Keywords

Navigation