Skip to main content

Advertisement

Log in

IGF2 DMR0 Methylation, Loss of Imprinting, and Patient Prognosis in Esophageal Squamous Cell Carcinoma

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Insulin like growth factor 2 gene (IGF2) is normally imprinted. Loss of imprinting (LOI) of IGF2 in humans is associated with an increased risk of cancer and is controlled by CpG-rich regions known as differentially methylated regions (DMRs). Specifically, the methylation level at IGF2 DMR0 is correlated with IGF2 LOI and is a suggested surrogate marker for IGF2 LOI. A relationship between IGF2 DMR0 hypomethylation and poor prognosis has been shown in colorectal cancer. However, to our knowledge, no study has examined the relationships among the IGF2 DMR0 methylation level, LOI, and clinical outcome in esophageal squamous cell carcinoma (ESCC).

Methods

The IGF2 imprinting status was screened using ApaI polymorphism, and IGF2 protein expression was evaluated by immunohistochemistry with 30 ESCC tissue specimens. For survival analysis, IGF2 DMR0 methylation was measured using a bisulfite pyrosequencing assay with 216 ESCC tissue specimens.

Results

Twelve (40 %) of 30 cases were informative (i.e., heterozygous for ApaI), and 5 (42 %) of 12 informative cases displayed IGF2 LOI. IGF2 LOI cases exhibited lower DMR0 methylation levels (mean 23 %) than IGF2 non-LOI cases (37 %). The IGF2 DMR0 methylation level was significantly associated with IGF2 protein expression. Among 202 patients eligible for survival analysis, IGF2 DMR0 hypomethylation was significantly associated with higher cancer-specific mortality.

Conclusions

The IGF2 DMR0 methylation level in ESCC was associated with IGF2 LOI and IGF2 protein expression. In addition, IGF2 DMR0 hypomethylation was associated with a shorter survival time, suggesting its potential role as a prognostic biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349:2241–52.

    Article  CAS  PubMed  Google Scholar 

  2. Gertler R, Stein HJ, Langer R, et al. Long-term outcome of 2920 patients with cancers of the esophagus and esophagogastric junction: evaluation of the New Union Internationale Contre le Cancer/American Joint Cancer Committee staging system. Ann Surg. 2011;253:689–98.

    Article  PubMed  Google Scholar 

  3. Rizk NP, Ishwaran H, Rice TW, et al. Optimum lymphadenectomy for esophageal cancer. Ann Surg. 2010;251:46–50.

    Article  PubMed  Google Scholar 

  4. Allum WH, Stenning SP, Bancewicz J, Clark PI, Langley RE. Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. J Clin Oncol. 2009;27:5062–7.

    Article  PubMed  Google Scholar 

  5. Fiorica F, Di Bona D, Schepis F, et al. Preoperative chemoradiotherapy for oesophageal cancer: a systematic review and meta-analysis. Gut. 2004;53:925–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bosset JF, Gignoux M, Triboulet JP, et al. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med. 1997;337:161–7.

    Article  CAS  PubMed  Google Scholar 

  7. Cui H, Cruz-Correa M, Giardiello FM, et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. 2003;299:1753–5.

    Article  CAS  PubMed  Google Scholar 

  8. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  9. Ho L, Stojanovski A, Whetstone H, et al. Gli2 and p53 cooperate to regulate IGFBP-3-mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors. Cancer Cell. 2009;16:126–36.

    Article  CAS  PubMed  Google Scholar 

  10. Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP. Relaxation of imprinted genes in human cancer. Nature. 1993;362:747–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ogawa O, Eccles MR, Szeto J, et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature. 1993;362:749–51.

    Article  CAS  PubMed  Google Scholar 

  12. Morison IM, Becroft DM, Taniguchi T, Woods CG, Reeve AE. Somatic overgrowth associated with overexpression of insulin-like growth factor II. Nat Med. 1996;2:311–6.

    Article  CAS  PubMed  Google Scholar 

  13. Timp W, Levchenko A, Feinberg AP. A new link between epigenetic progenitor lesions in cancer and the dynamics of signal transduction. Cell Cycle. 2009;8:383–90.

    Article  CAS  PubMed  Google Scholar 

  14. Harper J, Burns JL, Foulstone EJ, Pignatelli M, Zaina S, Hassan AB. Soluble IGF2 receptor rescues Apc(Min/+) intestinal adenoma progression induced by Igf2 loss of imprinting. Cancer Res. 2006;66:1940–8.

    Article  CAS  PubMed  Google Scholar 

  15. Sakatani T, Kaneda A, Iacobuzio-Donahue CA, et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science. 2005;307:1976–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kaneda A, Wang CJ, Cheong R, et al. Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk. Proc Natl Acad Sci USA. 2007;104:20926–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Baba Y, Nosho K, Shima K, et al. Hypomethylation of the IGF2 DMR in colorectal tumors, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastroenterology. 2010;139:1855–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97:1180–4.

    Article  CAS  PubMed  Google Scholar 

  19. Ogino S, Nosho K, Kirkner GJ, et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst. 2008;100:1734–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Baba Y, Huttenhower C, Nosho K, et al. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer. 2010;9:125.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zhao R, DeCoteau JF, Geyer CR, Gao M, Cui H, Casson AG. Loss of imprinting of the insulin-like growth factor II (IGF2) gene in esophageal normal and adenocarcinoma tissues. Carcinogenesis. 2009;30:2117–22.

    Article  CAS  PubMed  Google Scholar 

  22. Chava S, Mohan V, Shetty PJ, et al. Immunohistochemical evaluation of p53, FHIT, and IGF2 gene expression in esophageal cancer. Dis Esophagus. 2012;25:81–7.

    Article  CAS  PubMed  Google Scholar 

  23. Fitzgerald RC. Molecular basis of Barrett’s oesophagus and oesophageal adenocarcinoma. Gut. 2006;55:1810–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Baba Y, Watanabe M, Shigaki H, et al. Negative lymph-node count is associated with survival in patients with resected esophageal squamous cell carcinoma. Surgery. 2013;153:234–41.

    Article  PubMed  Google Scholar 

  25. Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 2002;62:6442–6.

    CAS  PubMed  Google Scholar 

  26. Cheng YW, Idrees K, Shattock R, et al. Loss of imprinting and marked gene elevation are 2 forms of aberrant IGF2 expression in colorectal cancer. Int J Cancer. 2010;127:568–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ito Y, Koessler T, Ibrahim AE, et al. Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet. 2008;17:2633–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ohta M, Sugimoto T, Seto M, et al. Genetic alterations in colorectal cancers with demethylation of insulin-like growth factor II. Hum Pathol. 2008;39:1301–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sasaki J, Konishi F, Kawamura YJ, Kai T, Takata O, Tsukamoto T. Clinicopathological characteristics of colorectal cancers with loss of imprinting of insulin-like growth factor 2. Int J Cancer. 2006;119:80–3.

    Article  CAS  PubMed  Google Scholar 

  30. Nakagawa H, Chadwick RB, Peltomaki P, Plass C, Nakamura Y, de La Chapelle A. Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc Natl Acad Sci USA. 2001;98:591–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Nishihara S, Hayashida T, Mitsuya K, et al. Multipoint imprinting analysis in sporadic colorectal cancers with and without microsatellite instability. Int J Oncol. 2000;17:317–22.

    CAS  PubMed  Google Scholar 

  32. Xu W, Fan H, He X, Zhang J, Xie W. LOI of IGF2 is associated with esophageal cancer and linked to methylation status of IGF2 DMR. J Exp Clin Cancer Res. 2006;25:543–7.

    CAS  PubMed  Google Scholar 

  33. Mori M, Inoue H, Shiraishi T, et al. Relaxation of insulin-like growth factor 2 gene imprinting in esophageal cancer. Int J Cancer. 1996;68:441–6.

    Article  CAS  PubMed  Google Scholar 

  34. Wu MS, Wang HP, Lin CC, et al. Loss of imprinting and overexpression of IGF2 gene in gastric adenocarcinoma. Cancer Lett. 1997;120:9–14.

    Article  CAS  PubMed  Google Scholar 

  35. Lu Y, Lu P, Zhu Z, Xu H, Zhu X. Loss of imprinting of insulin-like growth factor 2 is associated with increased risk of lymph node metastasis and gastric corpus cancer. J Exp Clin Cancer Res. 2009;28:125.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Zuo QS, Yan R, Feng DX, et al. Loss of imprinting and abnormal expression of the insulin-like growth factor 2 gene in gastric cancer. Mol Carcinog. 2011;50:390–6.

    Article  CAS  PubMed  Google Scholar 

  37. Murrell A, Ito Y, Verde G, et al. Distinct methylation changes at the IGF2H19 locus in congenital growth disorders and cancer. PLoS One. 2008;3:e1849.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ishii T, Murakami J, Notohara K, et al. Oesophageal squamous cell carcinoma may develop within a background of accumulating DNA methylation in normal and dysplastic mucosa. Gut. 2007;56:13–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Paterson AL, Shannon NB, Lao-Sirieix P, et al. A systematic approach to therapeutic target selection in oesophago-gastric cancer. Gut. 2013;62:1415–24.

    Article  CAS  PubMed  Google Scholar 

  40. Maley CC. Open questions in oesophageal adenocarcinogenesis. Gut. 2007;56:897–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Wong DJ, Paulson TG, Prevo LJ, et al. p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res. 2001;61:8284–9.

    CAS  PubMed  Google Scholar 

  42. Taby R, Issa JP. Cancer epigenetics. CA Cancer J Clin. 2010;60:376–92.

    Article  PubMed  Google Scholar 

  43. Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17:330–9.

    Article  CAS  PubMed  Google Scholar 

  44. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  45. Peng DF, Razvi M, Chen H, et al. DNA hypermethylation regulates the expression of members of the Mu-class glutathione S-transferases and glutathione peroxidases in Barrett’s adenocarcinoma. Gut. 2009;58:5–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Shen H, Laird PW. In epigenetic therapy, less is more. Cell Stem Cell. 2012;10:353–4.

    Article  CAS  PubMed  Google Scholar 

  47. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5:37–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (Grant 24659617).

Disclosures

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Baba MD, PhD, FACS.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, A., Baba, Y., Watanabe, M. et al. IGF2 DMR0 Methylation, Loss of Imprinting, and Patient Prognosis in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 21, 1166–1174 (2014). https://doi.org/10.1245/s10434-013-3414-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-3414-7

Keywords

Navigation