Skip to main content

Advertisement

Log in

Combination Treatment of Human Pancreatic Cancer Xenograft Models with the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Erlotinib and Oncolytic Herpes Simplex Virus HF10

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

There is the potential to use replication-competent oncolytic viruses to treat cancer. We evaluated the efficacy of HF10, a herpes simplex virus type 1 (HSV-1) mutant, in combination with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in human pancreatic cancer xenograft models.

Methods

The viability of human pancreatic cancer cell lines (BxPC-3 and PANC-1) treated with HF10 and erlotinib, on their own or in combination, was determined. Effects of erlotinib on HF10 entry into tumor cells were also investigated. BxPC-3 subcutaneous tumor-bearing mice were treated with HF10 and erlotinib, on their own or in combination, with effects on tumor volume determined. Immunohistochemical examination of HSV-1 and CD31 was conducted to assess virus distribution and angiogenesis within tumors. A peritoneally disseminated BxPC-3 xenograft model was evaluated for survival.

Results

HF10 combined with erlotinib demonstrated the highest cytotoxicity against BxPC-3. A combination effect was not observed in PANC-1 cells, and erlotinib did not affect virus entry into tumor cells. In the peritoneally disseminated model, HF10 combined with erlotinib had no beneficial effect on survival. In the subcutaneous tumor model, combination therapy resulted in the inhibition of tumor growth to a greater extent than using each agent on its own. Immunohistochemistry revealed that virus distribution within the tumor persisted in the combination therapy group.

Conclusions

Combination therapy with HF10 and erlotinib warrants further investigation to establish a new treatment strategy against human pancreatic cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seino T, Nakadaira H, Endoh K, et al. Changes in pancreatic cancer mortality, period patterns, and birth cohort patterns in Japan: analysis of mortality data in the period 1968–2002. Environ Health Prev Med. 2008;13:234–42.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–6.

    Article  CAS  PubMed  Google Scholar 

  3. Teshigahara O, Goshima F, Takao K, et al. Oncolytic viral therapy for breast cancer with herpes simplex virus type 1 mutant HF 10. J Surg Oncol. 2004;85:42–7.

    Article  CAS  PubMed  Google Scholar 

  4. Shimoyama S, Goshima F, Teshigahara O, et al. Enhanced efficacy of herpes simplex virus mutant HF10 combined with paclitaxel in peritoneal cancer dissemination models. Hepatogastroenterology. 2007;54:1038–42.

    CAS  PubMed  Google Scholar 

  5. Watanabe D, Goshima F, Mori I, Tamada Y, Matsumoto Y, Nishiyama Y. Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10. J Dermatol Sci. 2008;50:185–96.

    Article  CAS  PubMed  Google Scholar 

  6. Nawa A, Luo C, Zhang L, et al. Non-engineered, naturally oncolytic herpes simplex virus HSV1 HF-10: applications for cancer gene therapy. Curr Gene Ther. 2008;8:208–21.

    Article  CAS  PubMed  Google Scholar 

  7. Kimata H, Imai T, Kikumori T, et al. Pilot study of oncolytic viral therapy using mutant herpes simplex virus (HF10) against recurrent metastatic breast cancer. Ann Surg Oncol. 2006;13:1078–84.

    Article  PubMed  Google Scholar 

  8. Nakao A, Kasuya H, Sahin TT, et al. A phase I dose-escalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-resectable patients with advanced pancreatic cancer. Cancer Gene Ther. 2011;18:167–75.

    Article  CAS  PubMed  Google Scholar 

  9. Choi H. Critical issues in response evaluation on computed tomography: lessons from the gastrointestinal stromal tumor model. Curr Oncol Rep. 2005;7:307–11.

    Article  PubMed  Google Scholar 

  10. Sahin TT, Kasuya H, Nomura N, et al. Impact of novel oncolytic virus HF10 on cellular components of the tumor microenviroment in patients with recurrent breast cancer. Cancer Gene Ther. 2012;19:229–37.

    Article  CAS  PubMed  Google Scholar 

  11. Bareschino MA, Schettino C, Troiani T, Martinelli E, Morgillo F, Ciardiello F. Erlotinib in cancer treatment. Ann Oncol. 2007;18:vi35–41.

    Google Scholar 

  12. Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res. 2006;66:3197–204.

    Article  CAS  PubMed  Google Scholar 

  13. van Cruijsen H, Giaccone G, Hoekman K. Epidermal growth factor receptor and angiogenesis: opportunities for combined anticancer strategies. Int J Cancer. 2005;117:883–8.

    Article  PubMed  Google Scholar 

  14. Herbst RS, Sandler A. Bevacizumab and erlotinib: a promising new approach to the treatment of advanced NSCLC. Oncologist. 2008;13:1166–76.

    Article  CAS  PubMed  Google Scholar 

  15. Kindler HL, Niedzwiecki D, Hollis D, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the cancer and leukemia group B (GALGB 80303). J Clin Oncol. 2010;28:3617–22.

    Article  CAS  PubMed  Google Scholar 

  16. Nishiyama Y, Kimura H, Daikoku T. Complementary lethal invasion of the central nervous system by nonneuroinvasive herpes simplex virus types 1 and 2. J Virol. 1991;65:4520–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Takakuwa H, Goshima F, Nozawa N, et al. Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice. Arch Virol. 2003;148:813–25.

    Article  CAS  PubMed  Google Scholar 

  18. Carroll NM, Chiocca EA, Takahashi K, Tanabe KK. Enhancement of gene therapy specificity for diffuse colon carcinoma liver metastases with recombinant herpes simplex virus. Ann Surg. 1996;224:323–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kasuya H, Pawlik TM, Mullen JT, et al. Selectivity of an oncolytic herpes simplex virus for cells expressing the DF3/MUC1 antigen. Cancer Res. 2004;64:2561–7.

    Article  CAS  PubMed  Google Scholar 

  20. Yokoyama Y, Dhanabal M, Griffioen AW, Sukhatme VP, Ramakrishnan S. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res. 2000;60:2190–6.

    CAS  PubMed  Google Scholar 

  21. Yu DC, Chen Y, Dilley J, et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 2001;61:517–25.

    CAS  PubMed  Google Scholar 

  22. Arnoletti JP, Buchsbaum DJ, Huang ZQ, et al. Mechanisms of resistance to Erbitux (anti-epidermal growth factor receptor) combination therapy in pancreatic adenocarcinoma cells. J Gastrointest Surg. 2004;8:960–9.

    Article  PubMed  Google Scholar 

  23. Patra CR, Bhattacharya R, Wang E, et al. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 2008;68:1970–8.

    Article  CAS  PubMed  Google Scholar 

  24. Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. 2005;23:1803–10.

    Article  CAS  PubMed  Google Scholar 

  25. Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97:643–55.

    Article  CAS  PubMed  Google Scholar 

  26. Dziadziuszko R, Witta SE, Cappuzzo F, et al. Epidermal growth factor receptor messenger RNA expression, gene dosage, and gefitinib sensitivity in non-small cell lung cancer. Clin Cancer Res. 2006;12:3078–84.

    Article  CAS  PubMed  Google Scholar 

  27. Hirsch FR, Witta S. Biomarkers for prediction of sensitivity to EGFR inhibitors in non-small cell lung cancer. Curr Opin Oncol. 2005;17:118–22.

    Article  CAS  PubMed  Google Scholar 

  28. Buck E, Eyzaguirre A, Barr S, et al. Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer Ther. 2007;6:532–41.

    Article  CAS  PubMed  Google Scholar 

  29. Liu TC, Galanis E, Kirn D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol. 2007;4:101–17.

    Article  CAS  PubMed  Google Scholar 

  30. Parato KA, Senger D, Forsyth PA, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer. 2005;5:965–76.

    Article  CAS  PubMed  Google Scholar 

  31. Nemunaitis J, Khuri F, Ganly I, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001;19:289–98.

    CAS  PubMed  Google Scholar 

  32. Fan Y, Du W, He B, et al. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials. 2013;34:2277–88.

    Article  CAS  PubMed  Google Scholar 

  33. Wojton J, Kaur B. Impact of tumor microenvironment on oncolytic viral therapy. Cytokine Growth Factor Rev. 2010;21:127–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. McKee TD, Grandi P, Mok W, et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 2006;66:2509–13.

    Article  CAS  PubMed  Google Scholar 

  35. Kim JH, Lee YS, Kim H, Huang JH, Yoon AR, Yun CO. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst. 2006;98:1482–93.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng J, Sauthoff H, Huang Y, et al. Human matrix metalloproteinase-8 gene delivery increases the oncolytic activity of a replicating adenovirus. Mol Ther. 2007;15:1982–90.

    Article  CAS  PubMed  Google Scholar 

  37. Ganesh S, Gonzalez-Edick M, Gibbons D, Van Roey M, Jooss K. Intratumoral coadministration of hyaluronidase enzyme and oncolytic adenoviruses enhances virus potency in metastatic tumor models. Clin Cancer Res. 2008;14:3933–41.

    Article  CAS  PubMed  Google Scholar 

  38. Mok W, Boucher Y, Jain RK. Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res. 2007;67:10664–8.

    Article  CAS  PubMed  Google Scholar 

  39. Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 2010;18:1275–83.

    Article  CAS  PubMed  Google Scholar 

  40. Boucher Y, Jain RK. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 1992;52:5110–4.

    CAS  PubMed  Google Scholar 

  41. Boucher Y, Leunig M, Jain RK. Tumor angiogenesis and interstitial hypertension. Cancer Res. 1996;56:4264–6.

    CAS  PubMed  Google Scholar 

  42. Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer. 2004;4:806–13.

    Article  CAS  PubMed  Google Scholar 

  43. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64:3731–36.

    Article  CAS  PubMed  Google Scholar 

  44. Libertini S, Iacuzzo I, Perruolo G, et al. Bevacizumab increases viral distribution in human anaplastic thyroid carcinoma xenografts and enhances the effects of E1A-defective adenovirus dl922–947. Clin Cancer Res. 2008;14:6505–14.

    Article  CAS  PubMed  Google Scholar 

  45. Kurozumi K, Hardcastle J, Thakur R, et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst. 2007;99:1768–81.

    Article  CAS  PubMed  Google Scholar 

  46. Deguchi T, Shikano T, Kasuya H, et al. Combination of the tumor angiogenesis inhibitor bevacizumab and intratumoral oncolytic herpes virus injections as a treatment strategy for human gastric cancers. Hepatogastroenterology. 2012;59:1844–50.

    CAS  PubMed  Google Scholar 

  47. Aghi M, Rabkin SD, Martuza RL. Angiogenic response caused by oncolytic herpes simplex virus-induced reduced thrombospondin expression can be prevented by specific viral mutations or by administering a thrombospondin-derived peptide. Cancer Res. 2007;67:440–4.

    Article  CAS  PubMed  Google Scholar 

  48. Kurozumi K, Hardcastle J, Thakur R, et al. Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther. 2008;16:1382–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hardcastle J, Kurozumi K, Dmitrieva N, et al. Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1. Mol Ther. 2010;18:285–94.

    Article  CAS  PubMed  Google Scholar 

  50. Boshoff C. Kaposi’s sarcoma. Coupling herpesvirus to angiogenesis. Nature. 1998;391:24–25.

    Google Scholar 

  51. Zheng M, Schwarz MA, Lee S, Kumaraguru U, Rouse BT. Control of stromal keratitis by inhibition of neovascularization. Am J Pathol. 2001;159:1021–9.

    Article  CAS  PubMed  Google Scholar 

  52. Zheng M, Klinman DM, Gierynska M, Rouse BT. DNA containing CpG motifs induces angiogenesis. Proc Natl Acad Sci USA. 2002;99:8944–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Choudhary A, Hiscott P, Hart CA, Kaye SB, Batterbury M, Grierson I. Suppression of thrombospondin 1 and 2 production by herpes simplex virus 1 infection in cultured keratocytes. Mol Vis. 2005;11:163–8.

    CAS  PubMed  Google Scholar 

  54. Hayashi K, Hooper LC, Detrick B, Hooks JJ. HSV immune complex (HSV-IgG: IC) and HSV-DNA elicit the production of angiogenic factor VEGF and MMP-9. Arch Virol. 2009;154:219–26.

    Article  CAS  PubMed  Google Scholar 

  55. Wuest TR, Carr DJ. VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis. J Exp Med. 2010;207:101–15.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Disclosure

Maki Tanaka is an employee of Takara Bio Inc. The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kasuya MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamura, K., Kasuya, H., Sahin, T.T. et al. Combination Treatment of Human Pancreatic Cancer Xenograft Models with the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Erlotinib and Oncolytic Herpes Simplex Virus HF10. Ann Surg Oncol 21, 691–698 (2014). https://doi.org/10.1245/s10434-013-3329-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-3329-3

Keywords

Navigation