Skip to main content

Advertisement

Log in

Peritumoral Expression of Adipokines and Fatty Acids in Breast Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Adipokines in the tumor microenvironment may contribute to cancer growth. We hypothesized that peritumoral fat can be a source of lipid-derived energy for tumors by increasing adipose triglyceride lipase (ATGL)-mediated lipolysis and down-regulating a negative regulator of adipogenesis, pigment epithelium-derived factor (PEDF).

Methods

In a pilot study, tissue from mastectomies (n = 19) was collected from sites both adjacent (peritumoral) and distant to the tumor for comparison of ATGL, PEDF, and leptin expression levels using immunohistochemistry. Statistical analysis was performed by Student’s t test to determine significance.

Results

Mean tumor size was 2.4 cm, and 10 (59 %) patients had tumor-positive nodes. Mean body mass index (BMI) was 28.1 kg/m2. ATGL expression was significantly increased in obese patients (BMI ≥30 kg/m2) compared with the nonobese group (P < 0.04). Leptin expression was increased in the peritumoral stroma of obese patients compared with distant sites (P = 0.03). Peritumoral PEDF and the leptin/PEDF ratio were significantly affected by tumor size and node status. Tumors ≥2 cm had lower peritumoral stromal expression of PEDF than tumors <2 cm (P = 0.01). In node-positive cases, expression of PEDF was significantly decreased in the peritumoral stroma compared with node-negative cases (1.22 vs. 1.80, P < 0.04). The leptin/PEDF ratio was markedly elevated in the peritumoral region of node-positive cases versus node-negative cases (2.17 vs. 1.18, P < 0.001).

Conclusions

Peritumoral expression of adipokines was altered in both obesity and more advanced breast tumors, suggesting a role for adipokines in enhancing tumor growth. Future studies should focus on the use of adipokines as biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamineni A, Anderson ML, White E, et al. Body mass index, tumor characteristics, and prognosis following diagnosis of early-stage breast cancer in a mammographically screened population. Cancer Causes Control. 2013;24:305–312.

    Article  PubMed  Google Scholar 

  2. Chlebowski RT, Aiello E, McTiernan A. Weight loss in breast cancer patient management. J Clin Oncol. 2002;20:1128–43.

    Article  PubMed  Google Scholar 

  3. Daling JR, Malone KE, Doody DR, Johnson LG, Gralow JR, Porter PL. Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma. Cancer. 2001;92:720–9.

    Article  PubMed  CAS  Google Scholar 

  4. Ewertz M, Jensen MB, Gunnarsdottir KA, et al. Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol. 2011;29:25–31.

    Article  PubMed  Google Scholar 

  5. Goodwin PJ, Boyd NF. Body size and breast cancer prognosis: a critical review of the evidence. Breast Cancer Res Treat. 1990;16:205–14.

    Article  PubMed  CAS  Google Scholar 

  6. Holmberg L, Lund E, Bergstrom R, Adami HO, Meirik O. Oral contraceptives and prognosis in breast cancer: effects of duration, latency, recency, age at first use and relation to parity and body mass index in young women with breast cancer. Eur J Cancer. 1994;30A:351–4.

    Article  PubMed  CAS  Google Scholar 

  7. La Vecchia C, Negri E, Franceschi S, et al. Body mass index and post-menopausal breast cancer: an age-specific analysis. Br J Cancer. 1997;75:441–4.

    Article  PubMed  Google Scholar 

  8. Morimoto LM, White E, Chen Z, et al. Obesity, body size, and risk of postmenopausal breast cancer: the women’s health initiative (United States). Cancer Causes Control. 2002;13:741–51.

    Article  PubMed  Google Scholar 

  9. Newman SC, Lees AW, Jenkins HJ. The effect of body mass index and oestrogen receptor level on survival of breast cancer patients. Int J Epidemiol. 1997;26:484–90.

    Article  PubMed  CAS  Google Scholar 

  10. Reinier KS, Vacek PM, Geller BM. Risk factors for breast carcinoma in situ versus invasive breast cancer in a prospective study of pre- and post-menopausal women. Breast Cancer Res Treat. 2007;103:343–8.

    Article  PubMed  Google Scholar 

  11. Senie RT, Rosen PP, Rhodes P, Lesser ML, Kinne DW. Obesity at diagnosis of breast carcinoma influences duration of disease-free survival. Ann Intern Med. 1992;116:26–32.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang S, Folsom AR, Sellers TA, Kushi LH, Potter JD. Better breast cancer survival for postmenopausal women who are less overweight and eat less fat. The Iowa Women’s Health Study. Cancer. 1995;76:275–83.

    Article  PubMed  CAS  Google Scholar 

  13. Stephenson GD, Rose DP. Breast cancer and obesity: an update. Nutr Cancer. 2003;45:1–16.

    Article  PubMed  CAS  Google Scholar 

  14. Gilbert CA, Slingerland JM. Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression. Annu Rev Med. 2013;64:45–57.

    Article  PubMed  CAS  Google Scholar 

  15. Jeong YJ, Bong JG, Park SH, Choi JH, Oh HK. Expression of leptin, leptin receptor, adiponectin, and adiponectin receptor in ductal carcinoma in situ and invasive breast cancer. J Breast Cancer. 2011;14:96–103.

    Article  PubMed  Google Scholar 

  16. Vona-Davis L, Rose DP. Angiogenesis, adipokines and breast cancer. Cytokine Growth Factor Rev. 2009;20:193–201.

    Article  PubMed  CAS  Google Scholar 

  17. Housa D, Housova J, Vernerova Z, Haluzik M. Adipocytokines and cancer. Physiol Res. 2006;55:233–44.

    PubMed  CAS  Google Scholar 

  18. Saxena NK, Taliaferro-Smith L, Knight BB, et al. Bidirectional crosstalk between leptin and insulin-like growth factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Res. 2008;68:9712–22.

    Article  PubMed  CAS  Google Scholar 

  19. Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306(5700):1383–6.

    Article  PubMed  CAS  Google Scholar 

  20. Zechner R, Zimmermann R, Eichmann TO, et al. Fat signals—lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15:279–91.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang F, Du G. Dysregulated lipid metabolism in cancer. World J Biol Chem. 2012;3:167–74.

    Article  PubMed  Google Scholar 

  22. Steinberg GR, Kemp BE, Watt MJ. Adipocyte triglyceride lipase expression in human obesity. Am J Physiol Endocrinol Metab. 2007;293:E958–64.

    Article  PubMed  CAS  Google Scholar 

  23. Langin D, Dicker A, Tavernier G, et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes. 2005;54:3190–7.

    Article  PubMed  CAS  Google Scholar 

  24. Christiaens V, Lijnen HR. Angiogenesis and development of adipose tissue. Mol Cell Endocrinol. 2010;318:2–9.

    Article  PubMed  CAS  Google Scholar 

  25. Notari L, Baladron V, Aroca-Aguilar JD, et al. Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J Biol Chem. 2006;281:38022–37.

    Article  PubMed  CAS  Google Scholar 

  26. Chung C, Doll JA, Gattu AK, et al. Anti-angiogenic pigment epithelium-derived factor regulates hepatocyte triglyceride content through adipose triglyceride lipase (ATGL). J Hepatol. 2008;48:471–8.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou D, Cheng SQ, Ji HF, et al. Evaluation of protein pigment epithelium-derived factor (PEDF) and microvessel density (MVD) as prognostic indicators in breast cancer. J Cancer Res Clin Oncol. 2010;136:1719–27.

    Article  PubMed  CAS  Google Scholar 

  28. Jan R, Huang M, Lewis-Wambi J. Loss of pigment epithelium-derived factor: a novel mechanism for the development of endocrine resistance in breast cancer. Breast Cancer Res. 2012;14:R146.

    Article  PubMed  CAS  Google Scholar 

  29. Cai J, Parr C, Watkins G, Jiang WG, Boulton M. Decreased pigment epithelium-derived factor expression in human breast cancer progression. Clin Cancer Res. 2006;12(11 Pt 1):3510–7.

    Article  PubMed  CAS  Google Scholar 

  30. Fitzgerald DP, Subramanian P, Deshpande M, et al. Opposing effects of pigment epithelium-derived factor on breast cancer cell versus neuronal survival: implication for brain metastasis and metastasis-induced brain damage. Cancer Res. 2012;72:144–53.

    Article  PubMed  CAS  Google Scholar 

  31. Konson A, Pradeep S, Seger R. Phosphomimetic mutants of pigment epithelium-derived factor with enhanced antiangiogenic activity as potent anticancer agents. Cancer Res. 2010;70:6247–57.

    Article  PubMed  CAS  Google Scholar 

  32. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285(5425):245–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.

    Article  PubMed  CAS  Google Scholar 

  34. Jarde T, Caldefie-Chezet F, Damez M, et al. Adiponectin and leptin expression in primary ductal breast cancer and in adjacent healthy epithelial and myoepithelial tissue. Histopathology. 2008;53:484–7.

    Article  PubMed  CAS  Google Scholar 

  35. Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta. 2012;1825:207–22.

    PubMed  CAS  Google Scholar 

  36. Hu X, Juneja SC, Maihle NJ, Cleary MP. Leptin—a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst. 2002;94:1704–11.

    Article  PubMed  CAS  Google Scholar 

  37. Ishikawa M, Kitayama J, Nagawa H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin Cancer Res. 2004;10:4325–31.

    Article  PubMed  CAS  Google Scholar 

  38. Jarde T, Caldefie-Chezet F, Damez M, et al. Leptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncol Rep. 2008;19:905–11.

    PubMed  Google Scholar 

  39. Caldefie-Chezet F, Damez M, de Latour M, et al. Leptin: a proliferative factor for breast cancer? Study on human ductal carcinoma. Biochem Biophys Res Commun. 2005;334:737–41.

    Article  PubMed  CAS  Google Scholar 

  40. Barone I, Catalano S, Gelsomino L, et al. Leptin mediates tumor–stromal interactions that promote the invasive growth of breast cancer cells. Cancer Res. 2012;72:1416–27.

    Article  PubMed  CAS  Google Scholar 

  41. Gonzalez RR, Cherfils S, Escobar M, et al. Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J Biol Chem. 2006;281:26320–8.

    Article  PubMed  CAS  Google Scholar 

  42. McMurtry V, Simeone AM, Nieves-Alicea R, Tari AM. Leptin utilizes Jun N-terminal kinases to stimulate the invasion of MCF-7 breast cancer cells. Clin Exp Metastasis. 2009;26:197–204.

    Article  PubMed  CAS  Google Scholar 

  43. Chen DC, Chung YF, Yeh YT, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006;237:109–14.

    Article  PubMed  CAS  Google Scholar 

  44. Han C, Zhang HT, Du L, et al. Serum levels of leptin, insulin, and lipids in relation to breast cancer in china. Endocrine. 2005;26:19–24.

    Article  PubMed  CAS  Google Scholar 

  45. McGregor GP, Desaga JF, Ehlenz K, et al. Radiommunological measurement of leptin in plasma of obese and diabetic human subjects. Endocrinology. 1996;137:1501–4.

    Article  PubMed  CAS  Google Scholar 

  46. Tessitore L, Vizio B, Jenkins O, et al. Leptin expression in colorectal and breast cancer patients. Int J Mol Med. 2000;5:421–6.

    PubMed  CAS  Google Scholar 

  47. Wu MH, Chou YC, Chou WY, et al. Circulating levels of leptin, adiposity and breast cancer risk. Br J Cancer. 2009;100:578–82.

    Article  PubMed  CAS  Google Scholar 

  48. Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    Article  PubMed  CAS  Google Scholar 

  49. Sumner AE, Falkner B, Kushner H, Considine RV. Relationship of leptin concentration to gender, menopause, age, diabetes, and fat mass in African Americans. Obes Res. 1998;6:128–33.

    Article  PubMed  CAS  Google Scholar 

  50. Doll JA, Stellmach VM, Bouck NP, et al. Pigment epithelium–derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med. 2003;9:774–80.

    Article  PubMed  CAS  Google Scholar 

  51. Morris PG, Hudis CA, Giri D, et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res (Phila). 2011;4:1021–9.

    Article  PubMed  CAS  Google Scholar 

  52. Subbaramaiah K, Howe LR, Bhardwaj P, et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila). 2011;4:329–46.

    Article  PubMed  CAS  Google Scholar 

  53. Borg ML, Andrews ZB, Duh EJ, Zechner R, Meikle PJ, Watt MJ. Pigment epithelium-derived factor regulates lipid metabolism via adipose triglyceride lipase. Diabetes. 2011;60:1458–66.

    Article  PubMed  CAS  Google Scholar 

  54. Grippo PJ, Fitchev PS, Bentrem DJ, et al. Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Gut. 2012;61:1454–64.

    Article  PubMed  CAS  Google Scholar 

  55. Adjuvant! Online. Decision making tools for health care professionals. Adjuvant! for breast cancer (version 8.0). http://www.adjuvantonline.com. Accessed 14 June 2013.

  56. Birch AM, Buckett LK, Turnbull AV. DGAT1 inhibitors as anti-obesity and anti-diabetic agents. Curr Opin Drug Discov Dev. 2010;13:489–96.

    CAS  Google Scholar 

  57. Denison H, Nilsson C, Kujacic M, et al. Proof of mechanism for the DGAT1 inhibitor AZD7687: results from a first-time-in-human single-dose study. Diabetes Obes Metab. 2013;15:136–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by the Auxiliary of Evanston and Glenbrook Hospital’s Breast and Ovarian Research Pilot Award, NorthShore University HealthSystem.

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine A. Yao MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnerlich, J.L., Yao, K.A., Fitchev, P.S. et al. Peritumoral Expression of Adipokines and Fatty Acids in Breast Cancer. Ann Surg Oncol 20 (Suppl 3), 731–738 (2013). https://doi.org/10.1245/s10434-013-3274-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-3274-1

Keywords

Navigation