Skip to main content

Advertisement

Log in

Expression of Brachyury Gene Is a Significant Prognostic Factor for Primary Lung Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The clinical significance of Brachyury expression and its relationship to epithelial–mesenchymal transition in primary lung carcinoma is unclear.

Methods

Expression of Brachyury mRNA was investigated in 104 surgically resected primary lung carcinoma tissues. Immunohistochemical analysis of Brachyury transcription factor, Slug, E-cadherin, IL-8, N-cadherin, and Ki67 was performed in 67 of 104 cases, and their expression was correlated to prognoses and clinicopathological factors.

Results

Brachyury mRNA expression in primary lung carcinoma tissues was a significant predictor of poor prognosis for 5-year disease-free survival and overall survival rates and was significantly correlated to vascular invasion, lymphatic permeation, histological grade, pathologic T stage, and pathologic N stage (P < 0.05). Brachyury mRNA expression was significantly inversely correlated to E-cadherin expression (P = 0.0252) and positively correlated to IL-8 protein (P = 0.0241) and to Slug protein (P = 0.0243) in adenocarcinoma tissues.

Conclusions

A positive association between Brachyury and Slug and IL-8, and a negative association with E-cadherin may lead to invasiveness and metastasis in primary lung carcinoma. Brachyury mRNA expression is a significant predictor of poor prognosis in primary lung carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Zhu CQ, Shih W, Ling CH, Tsao MS. Immunohistochemical markers of prognosis in non–small cell lung cancer: a review and proposal for a multiphase approach to marker evaluation. J Clin Pathol. 2006;59:790–800.

    Article  PubMed  CAS  Google Scholar 

  3. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277:225–8.

    Article  PubMed  CAS  Google Scholar 

  4. Radisky ES, Radisky DC. Matrix metalloproteinase–induced epithelial–mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15:201–12.

    Article  PubMed  Google Scholar 

  5. Xu J, Rodriguez D, Petitclerc E, et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol. 2001;154:1069–79.

    Article  PubMed  CAS  Google Scholar 

  6. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74.

    Article  PubMed  CAS  Google Scholar 

  7. Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C. IL-8 signaling plays a critical role in the epithelial–mesenchymal transition of human carcinoma cells. Cancer Res. 2011;71:5296–306.

    Article  PubMed  CAS  Google Scholar 

  8. Fernando RI, Litzinger M, Trono P, et al. The T-box transcription factor Brachyury promotes epithelial–mesenchymal transition in human tumor cells. J Clin Invest. 2010;120:533–44.

    Article  PubMed  CAS  Google Scholar 

  9. Roselli M, Fernando RI, Guadagni F, et al. Brachyury, a driver of the epithelial–mesenchymal transition, is overexpressed in human lung tumors: an opportunity for novel interventions against lung cancer. Clin Cancer Res. 2012;18:3868–79.

    Google Scholar 

  10. Palena C, Polev DE, Tsang KY, et al. The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell-mediated cancer immunotherapy. Clin Cancer Res. 2007;13:2471–8.

    Article  PubMed  CAS  Google Scholar 

  11. Kilic N, Feldhaus S, Kilic E, et al. Brachyury expression predicts poor prognosis at early stages of colorectal cancer. Eur J Cancer. 2011;47:1080–5.

    Article  PubMed  Google Scholar 

  12. Krukovskaia LL, Polev DE, Nosova Iu K, et al.[Investigation of transcription factor Brachyury (T) expression in human normal and tumor tissues] Vopr Onkol. 2008;54:739–43.

    PubMed  CAS  Google Scholar 

  13. Park JC, Chae YK, Son CH, et al. Epigenetic silencing of human T (brachyury homologue) gene in non-small-cell lung cancer. Biochem Biophys Res Commun. 2008;365:221–6.

    Article  PubMed  CAS  Google Scholar 

  14. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

    Article  PubMed  CAS  Google Scholar 

  15. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–58.

    Article  PubMed  CAS  Google Scholar 

  16. Storci G, Sansone P, Trere D, et al. The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol. 2008;214:25–37.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang K, Chen D, Jiao X, et al. Slug enhances invasion ability of pancreatic cancer cells through upregulation of matrix metalloproteinase-9 and actin cytoskeleton remodeling. Lab Invest. 2011;91:426–38.

    Article  PubMed  CAS  Google Scholar 

  18. Shih JY, Tsai MF, Chang TH, et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res. 2005;11:8070–8.

    Article  PubMed  CAS  Google Scholar 

  19. Chou TY, Chen WC, Lee AC, et al. Clusterin silencing in human lung adenocarcinoma cells induces a mesenchymal-to-epithelial transition through modulating the ERK/Slug pathway. Cell Signal. 2009;21:704–11.

    Article  PubMed  CAS  Google Scholar 

  20. Cai M, Onoda K, Takao M, et al. Degradation of tenascin-C and activity of matrix metalloproteinase-2 are associated with tumor recurrence in early stage non–small cell lung cancer. Clin Cancer Res. 2002;8:1152–6.

    PubMed  CAS  Google Scholar 

  21. Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer. 2011;11:573–87.

    Article  PubMed  CAS  Google Scholar 

  22. Kubo F, Ueno S, Hiwatashi K, et al. Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis. Ann Surg Oncol. 2005;12:800–7.

    Article  PubMed  Google Scholar 

  23. Bates RC, DeLeo MJ, 3rd, Mercurio AM. The epithelial–mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res. 2004;299:315–24.

    Article  PubMed  CAS  Google Scholar 

  24. Kase S, Sugio K, Yamazaki K, et al. Expression of E-cadherin and beta-catenin in human non-small cell lung cancer and the clinical significance. Clin Cancer Res. 2000;6:4789–96.

    PubMed  CAS  Google Scholar 

  25. Masuya D, Huang C, Liu D, et al. The intratumoral expression of vascular endothelial growth factor and interleukin-8 associated with angiogenesis in nonsmall cell lung carcinoma patients. Cancer. 2001;92:2628–38.

    Article  PubMed  CAS  Google Scholar 

  26. Chen JJ, Yao PL, Yuan A, et al. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res. 2003;9:729–37.

    PubMed  CAS  Google Scholar 

  27. Orditura M, De Vita F, Catalano G, et al. Elevated serum levels of interleukin-8 in advanced non–small cell lung cancer patients: relationship with prognosis. J Interferon Cytokine Res. 2002;22:1129–35.

    Article  PubMed  CAS  Google Scholar 

  28. Yuan A, Yang PC, Yu CJ, et al. Interleukin-8 messenger ribonucleic acid expression correlates with tumor progression, tumor angiogenesis, patient survival, and timing of relapse in non-small-cell lung cancer. Am J Respir Crit Care Med. 2000;162:1957–63.

    Article  PubMed  CAS  Google Scholar 

  29. Sobin L. TNM classification of malignant tumors. 6th rev ed. New York: Wiley-Liss, 2002.

  30. Yuan A, Yu CJ, Luh KT, et al. Aberrant p53 expression correlates with expression of vascular endothelial growth factor mRNA and interleukin-8 mRNA and neoangiogenesis in non-small-cell lung cancer. J Clin Oncol. 2002;20:900–10.

    Article  PubMed  CAS  Google Scholar 

  31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  32. Sanchez-Mora N, Presmanes MC, Monroy V, et al. Micropapillary lung adenocarcinoma: a distinctive histologic subtype with prognostic significance. Case series. Hum Pathol. 2008;39:324–30.

    Article  CAS  Google Scholar 

  33. Moon KC, Cho SY, Lee HS, et al. Distinct expression patterns of E-cadherin and beta-catenin in signet ring cell carcinoma components of primary pulmonary adenocarcinoma. Arch Pathol Lab Med. 2006;130:1320–5.

    PubMed  CAS  Google Scholar 

  34. Prudkin L, Liu DD, Ozburn NC, et al. Epithelial-to-mesenchymal transition in the development and progression of adenocarcinoma and squamous cell carcinoma of the lung. Mod Pathol. 2009;22:668–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Haro MD.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haro, A., Yano, T., Kohno, M. et al. Expression of Brachyury Gene Is a Significant Prognostic Factor for Primary Lung Carcinoma. Ann Surg Oncol 20 (Suppl 3), 509–516 (2013). https://doi.org/10.1245/s10434-013-2914-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-2914-9

Keywords

Navigation