Annals of Surgical Oncology

, Volume 20, Issue 5, pp 1584–1590 | Cite as

Prevention of Anastomotic Leakage after Total Gastrectomy with Perioperative Supplemental Oxygen Administration: A Prospective Randomized, Double-blind, Controlled, Single-center Trial

  • Mario Schietroma
  • Emanuela Marina CeciliaEmail author
  • Francesco Carlei
  • Federico Sista
  • Giuseppe De Santis
  • Federica Piccione
  • Gianfranco Amicucci
Gastrointestinal Oncology



The role of supplemental oxygen therapy in the healing of esophagojejunal anastomosis is still very much in an experimental stage. The aim of the present prospective, randomized study was to assess the effect of administration of perioperative supplemental oxygen therapy on esophagojejunal anastomosis, where the risk of leakage is high.


We enrolled 171 patients between January 2009 and April 2012 who underwent elective open esophagojejunal anastomosis for gastric cancer. Patients were assigned randomly to an oxygen/air mixture with a fraction of inspired oxygen (FiO2) of 30 % (n = 85) or 80 % (n = 86). Administration commenced after induction of anesthesia and was maintained for 6 h after surgery.


The overall anastomotic leak rate was 14.6 % (25 of 171): 17 patients (20 %) had an anastomotic dehiscence in the 30 % FiO2 group and 8 (9.3 %) in the 80 % FiO2 group (P < 0.05). The risk of anastomotic leak was 49 % lower in the 80 % FiO2 group (relative risk 0.61; 95 % confidence interval 0.40–0.95) versus 30 % FiO2.


Supplemental 80 % FiO2 provided during and for 6 h after major gastric cancer surgery to reduce postoperative anastomotic dehiscence should be considered part of ongoing quality improvement activities related to surgical care, with few risks to the patient and little associated cost.


Anastomotic Leakage Supplemental Oxygen Anastomotic Dehiscence Ketorolac Tromethamine Esophagojejunal Anastomosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bonenkamp JJ, Songun I, Hermans J, et al. Randomised comparison of morbidity after D1 and D2 dissection for gastric cancer in 996 Dutch patients. Lancet. 1995;345:745–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Roder JD, Böttcher K, Siewert JR, Busch R, Hermanek P, Meyer HJ. Prognostic factors in gastric carcinoma. Results of the German Gastric Carcinoma Study 1992. Cancer. 1993;72:2089–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Budisin N, Budisin E, Golubovic A. Early complications following total gastrectomy for gastric cancer. J Surg Oncol. 2001;77:35–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Seufert RM, Schmidt-Matthiesen A, Beyer A. Total gastrectomy and oesophagojejunostomy—a prospective randomized trial of hand-sutured versus mechanically stapled anastomoses. Br J Surg. 1990;77:50–2.PubMedCrossRefGoogle Scholar
  5. 5.
    Nomura S, Sasako M, Katai H, Sano T, Maruyama K. Decreasing complication rates with stapled esophagojejunostomy following a learning curve. Gastric Cancer. 2000;3:97–101.PubMedCrossRefGoogle Scholar
  6. 6.
    Halsted WS. Circular suture of the intestine: an experimental study. Am J Med Sci. 1887;94:436–61.CrossRefGoogle Scholar
  7. 7.
    Adams W, Ctercteko G, Bilous M. Effect of an omental wrap on the healing and vascularity of compromised intestinal anastomoses. Dis Colon Rectum. 1992;35:731–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Abele D. Toxyc oxygen: the radical life-giver. Nature. 2002;420:27.PubMedCrossRefGoogle Scholar
  9. 9.
    Clarkson AN, Sutherland BA, Appleton I. The biology and pathology of hypoxia–ischemia: an update. Arch Immunol Ther Exp. 2005;53:213–25.Google Scholar
  10. 10.
    Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular disease: an overview. J Chromatogr B Anal Technol Biomed Life Sci. 2005;827:65–75.CrossRefGoogle Scholar
  11. 11.
    Shannon AM, Bouchier-Hayes DJ, Condrom CM, Toomey D. Tumor hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29:297–307.PubMedCrossRefGoogle Scholar
  12. 12.
    Sheridan WG, Lowndes RH, Young HL. Tissue oxygen tension as a predictor of colonic anastomotic healing. Dis Colon Rectum. 1987;30:867–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Hamzaoğlu I, Karahasanoğlu T, Aydin S, et al. The effects of hyperbaric oxygen on normal and ischemic colon anastomoses. Am J Surg. 1998;176:458–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Semenza GL. HIF-1, O2 and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107:1–3.PubMedCrossRefGoogle Scholar
  15. 15.
    West JB. Respiratory physiology—the essentials. Bethesda, MD: Williams & Willkins; 1999.Google Scholar
  16. 16.
    Hockel M, Vaupel P. Tumour hypoxia: definitions and current clinical, biologic and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Hunt TK, Pai MP. The effect of vaying oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet. 1972;135:561–7.PubMedGoogle Scholar
  18. 18.
    Belda FJ, Aguilera L, García de la Asunción J, et al.; Spanish Reduccion de la Tasa de Infeccion Quirurgica Group. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA. 2005;294:2035–42.PubMedCrossRefGoogle Scholar
  19. 19.
    American Society of Anesthesiologists. New classification of physiology status. Anesthesiologists. 1963;24:111.Google Scholar
  20. 20.
    Franchi M, Ghezzi F, Zanaboni F, Scarabelli C, Beretta P, Donadello N. Nonclosure of peritoneum at radical abdominal hysterectomy and pelvic node dissection: a randomized study. Obstet Gynecol. 1997;90:622.PubMedCrossRefGoogle Scholar
  21. 21.
    Kondrup J, Rasmussen HH, Hamberg O, Stanga Z. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr. 2003;22:321–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Hermanek P, Sobin LH, eds. UICC TNM classification of malignant tumors. 4th ed. 2nd revised edition. Berlin: Springer; 1982.Google Scholar
  23. 23.
    Greif R, Akca O, Horn EP, Kurz A, Sessler DI. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. Outcomes Research Group. N Engl J Med. 2000;342:161–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Brasel K, McRitchie D, Dellinger P; EBRS Group. Canadian Association of General Surgeons and American College of Surgeons Evidence Based Reviews in Surgery 21. The risk of surgical site infection is reduced with perioperative oxygen. Can J Surg. 2007;50:214–6.PubMedGoogle Scholar
  25. 25.
    Caldwell PRB, Lee WL Jr, Schildkraut HS, Archibald ER. Changes in lung volume, diffusing capacity, and blood gases in men breathing oxygen. J Appl Physiol. 1966;21:1477–83.PubMedGoogle Scholar
  26. 26.
    Turan A, Apfel CC, Kumpch M, et al. Does the efficacy of supplemental oxygen for the prevenction of postoperative nausea and vomiting depend on the measured outcome, observational period or site of surgery? Anaesthesia. 2006;61:628–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Mayzler O, Weksler N, Domchik S, Klein M, Mizrahi S, Gurman GM. Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery? Minerva Anestesiol. 2005;71:21–5.PubMedGoogle Scholar
  28. 28.
    Pryor KO, Fahey TJ III, Lien CA, Goldstein PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA. 2004;291:79–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Gardella C, Goltra LB, Laschansky E, et al. High concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial. Obstet Gynecol. 2008;112:545–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Qadan M, Akça O, Mahid SS, Hornung CA, Polk HC Jr. Perioperative supplemental oxygen therapy and surgical site infection: a meta-analysis of randomized controlled trials. Arch Surg. 2009;144:359–67.PubMedCrossRefGoogle Scholar
  31. 31.
    Meyhoff CS, Wetterslev J, Jorgensen LN, et al.; PROXI Trial. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery. JAMA. 2009;302:1543–50.PubMedCrossRefGoogle Scholar
  32. 32.
    García-Botello SA, García-Granero E, Lillo R, López-Mozos F, Millán M, Lledó S. Randomized clinical trial to evaluate the effects of perioperative supplemental oxygen administration on the colorectal anastomosis. Br J Surg. 2006;93:698–706.PubMedCrossRefGoogle Scholar
  33. 33.
    Tornero-Campello G. Letter: Randomized clinical trial to evaluate the effects of perioperative supplemental oxygen administration on the colorectal anastomosis (Br J Surg. 2006;93:698–706). Br J Surg. 2006;93:1148.Google Scholar
  34. 34.
    García-Botello SA. Author's reply: Randomized clinical trial to evaluate the effects of perioperative supplemental oxygen administration on the colorectal anastomosis (Br J Surg. 2006;93:698–706). Br J Surg. 2006;93:1148–1149.Google Scholar
  35. 35.
    Schietroma M, Carlei F, Cecilia EM, Piccione F, Bianchi Z, Amicucci G. Colorectal infraperitoneal anastomosis: the effects of perioperative supplemental oxygen administration on the anastomotic dehiscence. J Gastrointest Surg. 2012;16:427–34.PubMedCrossRefGoogle Scholar
  36. 36.
    Sala C, García-Granero E, Martí R. Anastomotic pHi monitoring after colorectal surgery. Design and preliminary results. Br J Surg. 1994;81:35.Google Scholar
  37. 37.
    García-Granero E, García J, Sala C. Is intramucosal pH associated with wound anastomotic complications after colorectal surgery? Dis Colon Rectum. 1998;41:56.CrossRefGoogle Scholar
  38. 38.
    Comroe JH Jr, Dripps RD, Dumke PR. Oxygen toxicity. The effect of inhalation of high concentrations of oxygen for twenty-four hours on normal men at sea level and at simulated altitude of 18000 feet. JAMA. 1945;128:710–7.CrossRefGoogle Scholar
  39. 39.
    Dubois AB, Turaids T, Mammen RE, Nobrega FT. Pulmonary atelectasis in subjects breathing oxygen at sea level or at simulated altitude. J Appl Physiol. 1966;21:828–36.PubMedGoogle Scholar
  40. 40.
    Montgomery AB, Luce JM, Murray JF. Retrosternal pain is an early indicator of oxygen toxicity. Am Rev Respir Dis. 1989;139:1548–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Kabon B, Kurz A. Optimal perioperative oxygen administration. Curr Opin Anaesthesiol. 2006;19:11–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Knighton DR, Halliday B, Hunt TK. Oxygen as an antibiotic: the effect of inspired oxygen on infection. Arch Surg. 1984;119:199–204.PubMedCrossRefGoogle Scholar
  43. 43.
    Allen DB, Maguire JJ, Mahdavian M, et al. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg. 1997;132:991–6.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2012

Authors and Affiliations

  • Mario Schietroma
    • 1
  • Emanuela Marina Cecilia
    • 1
    Email author
  • Francesco Carlei
    • 1
  • Federico Sista
    • 1
  • Giuseppe De Santis
    • 1
  • Federica Piccione
    • 1
  • Gianfranco Amicucci
    • 1
  1. 1.Department of SurgeryUniversity of L’AquilaL’AquilaItaly

Personalised recommendations