Skip to main content

Advertisement

Log in

The E2F Transcription Factor 1 Transactives Stathmin 1 in Hepatocellular Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Through data mining the Stanford Microarray Database, the stathmin 1 (STMN1) transcript was found to be frequently upregulated in the hepatocellular carcinoma (HCC) with low alpha-fetoprotein level. The molecular mechanism of STMN1 upregulation in HCCs remained unclear.

Methods

Quantitative RT-PCR, immunoblotting, immunohistochemistry, and transfection of expression or small hairpin RNA interference plasmids, chromatin immunoprecipitation (ChIP), and quantitative ChIP assays were performed in HCC specimens or 2 distinct HCC-derived cell lines. Dual luciferase assay and site-directed mutagenesis were applied to analyze the activities of STMN1 proximal promoter region.

Results

STMN1 mRNA and proteins were significantly associated with several clinicopathological features. High STMN1 or E2F1 immunoexpression was predictive of poor overall survival (OS) rate (P < .01). In HCC-derived cell lines, E2F1 was elevated before STMN1 mRNA during the cell cycle. Exogenous expression of E2F1 or both transcription factor DP-1 (TFDP1) and E2F1 genes induced E2F1 and STMN1 mRNA (P < .01). Knockdown of the E2F1 gene suppressed E2F1 and STMN1 mRNA and E2F1 and STMN1 protein levels (P < .05). The promoter activity of STMN1 gene increased with overexpression of both E2F1 and TFDP1 genes (P < .05); however, it decreased when mutations were introduced in the E2F1-binding sites (P < .05).

Conclusions

Upregulation of E2F1 and STMN1 proteins associate with worse outcomes in patients with HCC. E2F1 significantly correlates with STMN1 protein level in HCC lesions and in vitro transactivation assays, suggesting that STMN1 gene is transactivated by the E2F1 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, et al. Gene expression patterns in human liver cancers. Mol Biol Cell. 2002;13:1929–39.

    Article  PubMed  CAS  Google Scholar 

  2. Huang CW, Lin CY, Huang HY, Liu HW, Chen YJ, Shih DF, et al. CKS1B overexpression implicates clinical aggressiveness of hepatocellular carcinomas but not p27Kip1 protein turnover: an independent prognosticator with potential p27Kip1-independent oncogenic attributes? Ann Surg Oncol. 2010;17:907–22.

    Article  PubMed  Google Scholar 

  3. Melhem RF, Zhu XX, Hailat N, Strahler JR, Hanash SM. Characterization of the gene for a proliferation-related phosphoprotein (oncoprotein 18) expressed in high amounts in acute leukemia. J Biol Chem. 1991;266:17747–53.

    PubMed  CAS  Google Scholar 

  4. Ghosh PK, Anderson J, Cohen N, Takeshita K, Atweh GF, Lebowitz P. Expression of the leukemia-associated gene, p18, in normal and malignant tissues; inactivation of expression in a patient with cleaved B cell lymphoma/leukemia. Oncogene. 1993;8:2869–72.

    PubMed  CAS  Google Scholar 

  5. Brattsand G. Correlation of oncoprotein 18/stathmin expression in human breast cancer with established prognostic factors. Br J Cancer. 2000;83:311–8.

    Article  PubMed  CAS  Google Scholar 

  6. Chen G, Wang H, Gharib TG, Huang CC, Thomas DG, Shedden KA, et al. Overexpression of oncoprotein 18 correlates with poor differentiation in lung adenocarcinomas. Mol Cell Proteomics. 2003;2:107–16.

    Article  PubMed  CAS  Google Scholar 

  7. Kouzu Y, Uzawa K, Koike H, Saito K, Nakashima D, Higo M, et al. Overexpression of stathmin in oral squamous-cell carcinoma: correlation with tumour progression and poor prognosis. Br J Cancer. 2006;94:717–23.

    PubMed  CAS  Google Scholar 

  8. Mistry SJ, Atweh GF. Therapeutic interactions between stathmin inhibition and chemotherapeutic agents in prostate cancer. Mol Cancer Ther. 2006;5:3248–57.

    Article  PubMed  CAS  Google Scholar 

  9. Cheng AL, Huang WG, Chen ZC, Peng F, Zhang PF, Li MY, et al. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res. 2008;14:435–45.

    Article  PubMed  CAS  Google Scholar 

  10. Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM, et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci U S A. 2009;106:4834–9.

    Article  PubMed  CAS  Google Scholar 

  11. Jeon TY, Han ME, Lee YW, Lee YS, Kim GH, Song GA, et al. Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br J Cancer. 2010;102:710–8.

    Article  PubMed  CAS  Google Scholar 

  12. Zheng P, Liu YX, Chen L, Liu XH, Xiao ZQ, Zhao L, et al. Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res. 2010;9:4897–905.

    Article  PubMed  CAS  Google Scholar 

  13. Karst AM, Levanon K, Duraisamy S, Liu JF, Hirsch MS, Hecht JL, et al. Stathmin 1, a marker of PI3 K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. Gynecol Oncol. 2011;123:5–12.

    Article  PubMed  CAS  Google Scholar 

  14. Gan L, Guo K, Li Y, Kang X, Sun L, Shu H, et al. Up-regulated expression of stathmin may be associated with hepatocarcinogenesis. Oncol Rep. 2010;23:1037–43.

    PubMed  CAS  Google Scholar 

  15. Hsieh SY, Huang SF, Yu MC, Yeh TS, Chen TC, Lin YJ, et al. Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog. 2010;49:476–87.

    PubMed  CAS  Google Scholar 

  16. Yuan RH, Jeng YM, Chen HL, Lai PL, Pan HW, Hsieh FJ, et al. Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol. 2006;209:549–58.

    Article  PubMed  CAS  Google Scholar 

  17. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428:198–202.

    Article  PubMed  CAS  Google Scholar 

  18. Sellin ME, Holmfeldt P, Stenmark S, Gullberg M. Global regulation of the interphase microtubule system by abundantly expressed Op18/stathmin. Mol Biol Cell. 2008;19:2897–906.

    Article  PubMed  CAS  Google Scholar 

  19. Ringhoff DN, Cassimeris L. Stathmin regulates centrosomal nucleation of microtubules and tubulin dimer/polymer partitioning. Mol Biol Cell. 2009;20:3451–8.

    Article  PubMed  CAS  Google Scholar 

  20. Jeha S, Luo XN, Beran M, Kantarjian H, Atweh GF. Antisense RNA inhibition of phosphoprotein p18 expression abrogates the transformed phenotype of leukemic cells. Cancer Res. 1996;56:1445–50.

    PubMed  CAS  Google Scholar 

  21. Belletti B, Nicoloso MS, Schiappacassi M, Berton S, Lovat F, Wolf K, et al. Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Mol Biol Cell. 2008;19:2003–13.

    Article  PubMed  CAS  Google Scholar 

  22. Marklund U, Osterman O, Melander H, Bergh A, Gullberg M. The phenotype of a “Cdc2 kinase target site-deficient” mutant of oncoprotein 18 reveals a role of this protein in cell cycle control. J Biol Chem. 1994;269:30626–35.

    PubMed  CAS  Google Scholar 

  23. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17:1115–29.

    Article  PubMed  CAS  Google Scholar 

  24. Polager S, Ginsberg D. E2F mediates sustained G2 arrest and down-regulation of Stathmin and AIM-1 expression in response to genotoxic stress. J Biol Chem. 2003;278:1443–9.

    Article  PubMed  CAS  Google Scholar 

  25. Polzin RG, Benlhabib H, Trepel J, Herrera JE. E2F sites in the Op18 promoter are required for high level of expression in the human prostate carcinoma cell line PC-3-M. Gene. 2004;341:209–18.

    Article  PubMed  CAS  Google Scholar 

  26. Ahn J, Murphy M, Kratowicz S, Wang A, Levine AJ, George DL. Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene. 1999;18:5954–8.

    Article  PubMed  CAS  Google Scholar 

  27. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 2002;16:245–56.

    Article  PubMed  CAS  Google Scholar 

  28. Krek W, Livingston DM, Shirodkar S. Binding to DNA and the retinoblastoma gene product promoted by complex formation of different E2F family members. Science. 1993;262:1557–60.

    Article  PubMed  CAS  Google Scholar 

  29. Kuo KK, Chen YL, Chen LR, Li CF, Lan YH, Chang FR, et al. Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells. Toxicol Appl Pharmacol. 2011;256:8–23.

    Article  PubMed  CAS  Google Scholar 

  30. Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT, et al. Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res. 1986;46:5419–25.

    PubMed  CAS  Google Scholar 

  31. Wells J, Farnham PJ. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods. 2002;26:48–56.

    Article  PubMed  CAS  Google Scholar 

  32. Sandelin A, Wasserman WW, Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res. 2004;32:W249–52.

    Article  PubMed  CAS  Google Scholar 

  33. Hernando E, Nahle Z, Juan G, Diaz-Rodriguez Z, Alaminos M, Hermann M, et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature. 2004;430:797–802.

    Article  PubMed  CAS  Google Scholar 

  34. Singer S, Ehemann V, Brauckhoff A, Keith M, Vreden S, Schirmacher P, et al. Protumorigenic overexpression of stathmin/Op18 by gain-of-function mutation in p53 in human hepatocarcinogenesis. Hepatology. 2007;46:759–68.

    Article  PubMed  CAS  Google Scholar 

  35. INVESTIGATORS TCOTLIPC. Prospective validation of the CLIP score: a new prognostic system for patients with cirrhosis and hepatocellular carcinoma. The Cancer of the Liver Italian Program (CLIP) Investigators. Hepatology. 2000;31:840–5.

    Google Scholar 

  36. Nakajima T, Yasui K, Zen K, Inagaki Y, Fujii H, Minami M, et al. Activation of B-Myb by E2F1 in hepatocellular carcinoma. Hepatol Res. 2008;38:886–95.

    PubMed  CAS  Google Scholar 

  37. Saito M, Helin K, Valentine MB, Griffith BB, Willman CL, Harlow E, et al. Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia cell line. Genomics. 1995;25:130–8.

    Article  PubMed  CAS  Google Scholar 

  38. Fujita Y, Sakakura C, Shimomura K, Nakanishi M, Yasuoka R, Aragane H, et al. Chromosome arm 20q gains and other genomic alterations in esophageal squamous cell carcinoma, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Hepatogastroenterology. 2003;50:1857–63.

    PubMed  CAS  Google Scholar 

  39. Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E. Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer. 1999;81:535–8.

    Article  PubMed  CAS  Google Scholar 

  40. Postma C, Hermsen MA, Coffa J, Baak JP, Mueller JD, Mueller E, et al. Chromosomal instability in flat adenomas and carcinomas of the colon. J Pathol. 2005;205:514–21.

    Article  PubMed  CAS  Google Scholar 

  41. Watanabe T, Imoto I, Katahira T, Hirasawa A, Ishiwata I, Emi M, et al. Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers. Jpn J Cancer Res. 2002;93:1114–22.

    Article  PubMed  CAS  Google Scholar 

  42. Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, et al. Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol. 2002;198:142–56.

    Article  PubMed  CAS  Google Scholar 

  43. Eymin B, Gazzeri S, Brambilla C, Brambilla E. Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma. Oncogene. 2001;20:1678–87.

    Article  PubMed  CAS  Google Scholar 

  44. Han S, Park K, Bae BN, Kim KH, Kim HJ, Kim YD, et al. E2F1 expression is related with the poor survival of lymph node-positive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide. Breast Cancer Res Treat. 2003;82:11–6.

    Article  PubMed  CAS  Google Scholar 

  45. Yamazaki K, Yajima T, Nagao T, Shinkawa H, Kondo F, Hanami K, et al. Expression of transcription factor E2F-1 in pancreatic ductal carcinoma: an immunohistochemical study. Pathol Res Pract. 2003;199:23–8.

    Article  PubMed  Google Scholar 

  46. Yasui K, Okamoto H, Arii S, Inazawa J. Association of over-expressed TFDP1 with progression of hepatocellular carcinomas. J Hum Genet. 2003;48:609–13.

    Article  PubMed  CAS  Google Scholar 

  47. Conner EA, Lemmer ER, Omori M, Wirth PJ, Factor VM, Thorgeirsson SS. Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. Oncogene. 2000;19:5054–62.

    Article  PubMed  CAS  Google Scholar 

  48. Coulouarn C, Gomez-Quiroz LE, Lee JS, Kaposi-Novak P, Conner EA, Goldina TA, et al. Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. Hepatology. 2006;44:1003–11.

    Article  PubMed  CAS  Google Scholar 

  49. DeGregori J, Johnson DG. Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Curr Mol Med. 2006;6:739–48.

    CAS  Google Scholar 

  50. Gurtsevitch VE. Human oncogenic viruses: hepatitis B and hepatitis C viruses and their role in hepatocarcinogenesis. Biochemistry (Mosc). 2008;73:504–13.

    Article  PubMed  CAS  Google Scholar 

  51. Dragani TA. Risk of HCC: genetic heterogeneity and complex genetics. J Hepatol. 2010;52:252–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The first 2 authors contributed equally. The authors thank Dr. Shu-Chun Teng (College of Medicine, National Taiwan University) for valuable discussions. This work was supported by the National Science Council, Taiwan (98-2311-B-110-001-MY3 to YL Shiue) and Chi-Mei Foundation Medical Center (CMFHR9658 to YH Uen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Ling Shiue PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Supplementary material 2 (PDF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YL., Uen, YH., Li, CF. et al. The E2F Transcription Factor 1 Transactives Stathmin 1 in Hepatocellular Carcinoma. Ann Surg Oncol 20, 4041–4054 (2013). https://doi.org/10.1245/s10434-012-2519-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2519-8

Keywords

Navigation