Skip to main content

Advertisement

Log in

Characteristic Immunophenotype of Solid Subtype Component in Lung Adenocarcinoma

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Lung adenocarcinomas represent a morphologically heterogeneous tumor composed of an admixture of different histologic subtypes (lepidic, papillary, acinar, and solid subtype). The presence of a solid subtype component is reported to be associated with a poorer prognosis. The aim of this study was to evaluate the characteristic immunophenotype of the solid subtype component compared with the immunophenotypes of other components.

Methods

We analyzed the clinicopathological characteristics of stage I adenocarcinoma patients with predominant solid subtype disease. Furthermore, we immunostained adenocarcinomas with predominant lepidic, papillary, acinar, and solid subtype components (n = 23 each) for 10 molecular markers of tumor invasiveness and scored the results.

Results

Patients showing predominance of the solid subtype component (solid subtype adenocarcinoma) had a poorer prognosis than those showing predominance of the lepidic, papillary, or acinar component. Lymphovascular invasion was more often detected in solid subtype tumors than in others. The solid subtype component showed a significantly stronger staining intensity of laminin-5 expression than the lepidic, papillary, and acinar components (P < 0.001, P < 0.001, and P = 0.016, respectively). The fibronectin and vimentin expression levels were also significantly higher in the solid subtype component than in other components. This immunostaining character was validated by using mixed-subtype adenocarcinomas containing all four components in the same tumor.

Conclusions

This study concluded that the solid subtype component in lung adenocarcinomas exhibit the invasive immunophenotype, including increased laminin-5 expression, compared with the other components, which may be associated with a poorer prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asamura H, Goya T, Koshiishi Y, et al. A Japanese Lung Cancer Registry study: prognosis of 13,010 resected lung cancers. J Thorac Oncol. 2008;3:46–52.

    Article  PubMed  Google Scholar 

  2. Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc. 2011;8:381–5.

    Article  PubMed  Google Scholar 

  3. Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

    Article  PubMed  Google Scholar 

  4. Travis WD, Brambilla E, Van Schil P, et al. Paradigm shifts in lung cancer as defined in the new IASLC/ATS/ERS lung adenocarcinoma classification. Eur Respir J. 2011;38:239–43.

    Article  PubMed  CAS  Google Scholar 

  5. Travis W, Brambilla E, Muller-Hermelink H, Harris C. World Health Organization classification of tumors. Pathology and genetics of the lung, pleura, thymus and heart. IARC Press; 2004.

  6. Sica G, Yoshizawa A, Sima CS, et al. A grading system of lung adenocarcinomas based on histologic pattern is predictive of disease recurrence in stage I tumors. Am J Surg Pathol. 2010;34:1155–62.

    Article  PubMed  Google Scholar 

  7. Borczuk AC, Qian F, Kazeros A, et al. Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol. 2009;33:462–9.

    Article  PubMed  Google Scholar 

  8. Noguchi M, Morikawa A, Kawasaki M, et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer. 1995;75:2844–52.

    Article  PubMed  CAS  Google Scholar 

  9. Sakurai H, Maeshima A, Watanabe S, et al. Grade of stromal invasion in small adenocarcinoma of the lung: histopathological minimal invasion and prognosis. Am J Surg Pathol. 2004;28:198–206.

    Article  PubMed  Google Scholar 

  10. Yim J, Zhu LC, Chiriboga L, et al. Histologic features are important prognostic indicators in early stages lung adenocarcinomas. Mod Pathol. 2007;20:233–41.

    Article  PubMed  CAS  Google Scholar 

  11. Barletta JA, Yeap BY, Chirieac LR. Prognostic significance of grading in lung adenocarcinoma. Cancer. 2010;116:659–69.

    Article  PubMed  Google Scholar 

  12. Ohtaki Y, Yoshida J, Ishii G, et al. Prognostic significance of a solid component in pulmonary adenocarcinoma. Ann Thorac Surg. 2011;91:1051–7.

    Article  PubMed  Google Scholar 

  13. Petersen I, Kotb WF, Friedrich KH, et al. Core classification of lung cancer: correlating nuclear size and mitoses with ploidy and clinicopathological parameters. Lung Cancer. 2009;65:312–8.

    Article  PubMed  Google Scholar 

  14. Riquet M, Foucault C, Berna P, et al. Prognostic value of histology in resected lung cancer with emphasis on the relevance of the adenocarcinoma subtyping. Ann Thorac Surg. 2006;81:1988–95.

    Article  PubMed  Google Scholar 

  15. Al-Saad S, Al-Shibli K, Donnem T, et al. The prognostic impact of NF-kappaB p105, vimentin, E-cadherin and Par6 expression in epithelial and stromal compartment in non-small-cell lung cancer. Br J Cancer. 2008;99:1476–83.

    Article  PubMed  CAS  Google Scholar 

  16. Moriya Y, Niki T, Yamada T, et al. Increased expression of laminin-5 and its prognostic significance in lung adenocarcinomas of small size. An immunohistochemical analysis of 102 cases. Cancer. 2001;91:1129–41.

    Article  PubMed  CAS  Google Scholar 

  17. Sholl LM, Barletta JA, Yeap BY, et al. Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma. Am J Surg Pathol. 2010;34:1193–8.

    Article  PubMed  Google Scholar 

  18. Motoi N, Szoke J, Riely GJ, et al. Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol. 2008;32:810–27.

    Article  PubMed  Google Scholar 

  19. Sobin L, Wittekind C. TNM classification of malignant tumors. New York: Wiley and Sons; 2002.

    Google Scholar 

  20. Tsuta K, Ishii G, Nitadori J, et al. Comparison of the immunophenotypes of signet-ring cell carcinoma, solid adenocarcinoma with mucin production, and mucinous bronchioloalveolar carcinoma of the lung characterized by the presence of cytoplasmic mucin. J Pathol. 2006;209:78–87.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu FD, Nielsen TO, Alkushi A, et al. Tissue microarrays are an effective quality assurance tool for diagnostic immunohistochemistry. Mod Pathol. 2002;15:1374–80.

    Article  PubMed  Google Scholar 

  22. Bryant CM, Albertus DL, Kim S, et al. Clinically relevant characterization of lung adenocarcinoma subtypes based on cellular pathways: an international validation study. PLoS One. 2010;5:e11712.

    Article  PubMed  Google Scholar 

  23. Eren B, Sar M, Oz B, Dincbas FH. MMP-2, TIMP-2 and CD44v6 expression in non-small-cell lung carcinomas. Ann Acad Med Singapore. 2008;37:32–9.

    PubMed  Google Scholar 

  24. Maatta M, Soini Y, Paakko P, et al. Expression of the laminin gamma2 chain in different histological types of lung carcinoma. A study by immunohistochemistry and in situ hybridization. J Pathol. 1999;188:361–8.

    Article  PubMed  CAS  Google Scholar 

  25. Tsutsumida H, Nomoto M, Goto M, et al. A micropapillary pattern is predictive of a poor prognosis in lung adenocarcinoma, and reduced surfactant apoprotein A expression in the micropapillary pattern is an excellent indicator of a poor prognosis. Mod Pathol. 2007;20:638–47.

    Article  PubMed  Google Scholar 

  26. Yun J, Son CH, Um SJ, et al. A different TRAP220 expression in distinct histologic subtypes of lung adenocarcinoma and the prognostic significance. Lung Cancer. 2011;71:312–8.

    Article  PubMed  Google Scholar 

  27. Takatsuki H, Komatsu S, Sano R, et al. Adhesion of gastric carcinoma cells to peritoneum mediated by alpha3beta1 integrin (VLA-3). Cancer Res. 2004;64:6065–70.

    Article  PubMed  CAS  Google Scholar 

  28. Koshikawa N, Moriyama K, Takamura H, et al. Overexpression of laminin gamma2 chain monomer in invading gastric carcinoma cells. Cancer Res. 1999;59:5596–601.

    PubMed  CAS  Google Scholar 

  29. Kosmehl H, Berndt A, Strassburger S, et al. Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer. 1999;81:1071–9.

    Article  PubMed  CAS  Google Scholar 

  30. Pyke C, Romer J, Kallunki P, et al. The gamma 2 chain of kalinin/laminin 5 is preferentially expressed in invading malignant cells in human cancers. Am J Pathol. 1994;145:782–91.

    PubMed  CAS  Google Scholar 

  31. Soini Y, Maatta M, Salo S, et al. Expression of the laminin gamma 2 chain in pancreatic adenocarcinoma. J Pathol. 1996;180:290–4.

    Article  PubMed  CAS  Google Scholar 

  32. Yamaguchi Y, Ishii G, Kojima M, et al. Histopathologic features of the tumor budding in adenocarcinoma of the lung: tumor budding as an index to predict the potential aggressiveness. J Thorac Oncol. 2010;5:1361–8.

    Article  PubMed  Google Scholar 

  33. Salo S, Boutaud A, Hansen AJ, et al. Antibodies blocking adhesion and matrix binding domains of laminin-332 inhibit tumor growth and metastasis in vivo. Int J Cancer. 2009;125:1814–25.

    Article  PubMed  CAS  Google Scholar 

  34. Sawai H, Okada Y, Funahashi H, et al. Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal–regulated kinase-1/2 signaling pathway activation. Mol Cancer. 2005;4:37.

    Article  PubMed  Google Scholar 

  35. Shibata K, Kikkawa F, Nawa A, et al. Both focal adhesion kinase and c-Ras are required for the enhanced matrix metalloproteinase 9 secretion by fibronectin in ovarian cancer cells. Cancer Res. 1998;58:900–3.

    PubMed  CAS  Google Scholar 

  36. Meng XN, Jin Y, Yu Y, et al. Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. Br J Cancer. 2009;101:327–34.

    Article  PubMed  CAS  Google Scholar 

  37. Leader M, Collins M, Patel J, Henry K. Vimentin: an evaluation of its role as a tumour marker. Histopathology. 1987;11:63–72.

    Article  PubMed  CAS  Google Scholar 

  38. Bindels S, Mestdagt M, Vandewalle C, et al. Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene. 2006;25:4975–85.

    Article  PubMed  CAS  Google Scholar 

  39. Hu L, Lau SH, Tzang CH, et al. Association of Vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene. 2004;23:298–302.

    Article  PubMed  CAS  Google Scholar 

  40. Takeyama Y, Sato M, Horio M, et al. Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett. 2010;296:216–24.

    Article  PubMed  CAS  Google Scholar 

  41. Nieto MA. Epithelial–mesenchymal transitions in development and disease: old views and new perspectives. Int J Dev Biol. 2009;53:1541–7.

    Article  PubMed  Google Scholar 

  42. Voulgari A, Pintzas A. Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta. 2009;1796:75–90.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genichiro Ishii MD, PhD or Atsushi Ochiai MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takuwa, T., Ishii, G., Nagai, K. et al. Characteristic Immunophenotype of Solid Subtype Component in Lung Adenocarcinoma. Ann Surg Oncol 19, 3943–3952 (2012). https://doi.org/10.1245/s10434-012-2428-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2428-x

Keywords

Navigation