Skip to main content

Advertisement

Log in

The Relationship Between Tumor Inflammatory Cell Infiltrate and Outcome in Patients with Pancreatic Ductal Adenocarcinoma

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The tumor-associated inflammatory cell infiltrate is recognized to have prognostic value in various common solid tumors. However, the prognostic value of the tumor inflammatory cell infiltrate has not been established in pancreatic ductal adenocarcinoma (PDAC) nor has its relationship with the systemic inflammatory response.

Methods

Retrospective study was made of 173 patients who underwent surgery between 1997 and 2009. Routine pathology specimens were scored according to density of the tumor inflammatory cell infiltrate, and biochemical data were collected preoperatively.

Results

Low-grade tumor inflammatory cell infiltrate was associated with earlier tumor recurrence (P < 0.001) and particularly in the liver (P = 0.027). It was also associated with T3 tumors (P < 0.05), lymph node involvement (P < 0.05), and resection margin involvement (P < 0.05). On univariate survival analysis, age <65 years (P < 0.05), mGPS (P < 0.001), increased tumor stage (P < 0.01), nodal involvement (P < 0.01), size (P < 0.05), grade (P < 0.05), perineural invasion (P < 0.05), venous invasion (P < 0.01), resection margin involvement (P ≤ 0.001), vascular reconstruction (P < 0.05), and no adjuvant chemotherapy (P < 0.05) were associated with poor survival. In contrast, high-grade tumor inflammatory cell infiltrate was associated with better survival (P < 0.001). On multivariate survival analysis, mGPS [hazard ratio (HR): 1.77, 95 % confidence interval (95 % CI): 1.19–2.62, P = 0.005], tumor stage (HR: 2.21, 95 % CI: 1.16–4.23, P = 0.016), resection margin involvement (HR: 2.19, 95 % CI: 1.41–3.44, P = 0.001), venous invasion (HR: 1.79, 95 % CI: 1.22–2.63, P = 0.003), tumor inflammatory cell infiltrate (HR: 0.37, 95 % CI: 0.25–0.55, P = 0.0001), and adjuvant chemotherapy (P = 0.04) were independently prognostic.

Conclusions

The results of the study show, for the first time, that the presence of a high-grade tumor inflammatory cell infiltrate is an independent predictor of prolonged overall survival following resection for PDAC. Furthermore, measures of the local and the systemic inflammatory response were inversely associated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ghaneh P, Costello E, Neoptolemos JP. Biology and management of pancreatic cancer. Gut. 2007;56:1134–52.

    Article  PubMed  CAS  Google Scholar 

  2. Winter JM, Cameron JL, Campbell KA, Arnold MA, Chang DC, Coleman J, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: A single-institution experience. J Gastrointest Surg. 2006;10:1199–210.

    Article  PubMed  Google Scholar 

  3. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  PubMed  CAS  Google Scholar 

  4. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2009;29:1093–102.

    Article  PubMed  Google Scholar 

  5. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  PubMed  CAS  Google Scholar 

  6. Clemente CG, Mihm MC, Jr., Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77:1303–10.

    Article  PubMed  CAS  Google Scholar 

  7. Vesalainen S, Lipponen P, Talja M, Syrjanen K. Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer. 1994;30A:1797–803.

    Article  PubMed  CAS  Google Scholar 

  8. Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El-Habashi A, Marrogi OL, et al. Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer. 1997;74:492–501.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13.

    Article  PubMed  CAS  Google Scholar 

  10. Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kosma VM. Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol. 1997;182:318–24.

    Article  PubMed  CAS  Google Scholar 

  11. Nielsen HJ, Hansen U, Christensen IJ, Reimert CM, Brünner N, Moesgaard F. Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J Pathol. 1999;189:487–95.

    Article  PubMed  CAS  Google Scholar 

  12. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.

    Article  PubMed  CAS  Google Scholar 

  13. Klintrup K, Makinen JM, Kauppila S, Vare PO, Melkko J, Tuominen H, et al. Inflammation and prognosis in colorectal cancer. Eur J Cancer. 2005;41:2645–54.

    Article  PubMed  Google Scholar 

  14. Roxburgh CS, Salmond JM, Horgan PG, Oien KA, McMillan DC. Comparison of the prognostic value of inflammation-based pathologic and biochemical criteria in patients undergoing potentially curative resection for colorectal cancer. Ann Surg. 2009;249:788–93.

    Article  PubMed  Google Scholar 

  15. Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2007;6:1186–97.

    Article  PubMed  CAS  Google Scholar 

  16. Jamieson NB, Glen P, McMillan DC, McKay CJ, Foulis AK, Carter R, et al. Systemic inflammatory response predicts outcome in patients undergoing resection for ductal adenocarcinoma head of pancreas. Br J Cancer. 2005;92:21–3.

    Article  PubMed  CAS  Google Scholar 

  17. Jamieson NB, Denley SM, Logue JA, MacKenzie DJ, Foulis AK, Dickson EJ, et al. A prospective comparison of the prognostic value of tumor and patient related factors in patients undergoing potentially curative surgery for pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2011;18:2318–28.

    Article  PubMed  Google Scholar 

  18. Neoptolemos JP, Stocken DD, Dunn JA, Almond J, Beger HG, Pederzoli P, et al. Influence of resection margins on survival for patients with pancreatic cancer treated by adjuvant chemoradiation and/or chemotherapy in the ESPAC-1 randomized controlled trial. Ann Surg. 2001;234:758–68.

    Article  PubMed  CAS  Google Scholar 

  19. Exocrine pancreas. In: Greene FL, Page DL, Fleming ID, Fritz A, Balch CM, Haller DG, et al, eds. AJCC Cancer Staging Manual. Chicago: Springer; 2002:157–64.

  20. The Royal College of Pathologists, Campbell F, Bennett MK, Foulis AK. Standards and Minimum Datasets for Reporting Cancers. Minimum Dataset for the Histopathological Reporting of Pancreatic, Ampulla of Vater and Bile Duct Carcinoma. London: The Royal College of Pathologists; 2002.

  21. Luttges J, Schemm S, Vogel I, Hedderich J, Kremer B, Kloppel G. The grade of pancreatic ductal carcinoma is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation. J Pathol. 2000;191:154–61.

    Article  PubMed  CAS  Google Scholar 

  22. Forrest LM, McMillan DC, McArdle CS, Angerson WJ, Dunlop DJ. Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br J Cancer. 2003;89:1028–30.

    Article  PubMed  CAS  Google Scholar 

  23. McMillan DC, Crozier JE, Canna K, Angerson WJ, McArdle CS. Evaluation of an inflammation-based prognostic score (GPS) in patients undergoing resection for colon and rectal cancer. Int J Colorectal Dis. 2007;22:881–6.

    Article  PubMed  Google Scholar 

  24. Leitch EF, Chakrabarti M, Crozier JE, McKee RF, Anderson JH, Horgan PG, et al. Comparison of the prognostic value of selected markers of the systemic inflammatory response in patients with colorectal cancer. Br J Cancer. 2007;97:1266–70.

    Article  PubMed  CAS  Google Scholar 

  25. Hauser CA, Stockler MR, Tattersall MH. Prognostic factors in patients with recently diagnosed incurable cancer: a systematic review. Support Care Cancer. 2006;14:999–1011.

    Article  PubMed  Google Scholar 

  26. Maltoni M, Caraceni A, Brunelli C, Broeckaert B, Christakis N, Eychmueller S, et al. Prognostic factors in advanced cancer patients: evidence-based clinical recommendations–a study by the Steering Committee of the European Association for Palliative Care. J Clin Oncol. 2005;23:6240–8.

    Article  PubMed  Google Scholar 

  27. Ramsey S, Lamb GW, Aitchison M, Graham J, McMillan DC. Evaluation of an inflammation-based prognostic score in patients with metastatic renal cancer. Cancer. 2007;109:205–12.

    Article  PubMed  Google Scholar 

  28. Vigano A, Bruera E, Jhangri GS, Newman SC, Fields AL, Suarez-Almazor ME. Clinical survival predictors in patients with advanced cancer. Arch Intern Med. 2000;160:861–8.

    Article  PubMed  CAS  Google Scholar 

  29. Esposito I, Menicagli M, Funel N, Bergmann F, Boggi U, Mosca F, et al. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol. 2004;57:630–6.

    Google Scholar 

  30. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    Article  PubMed  CAS  Google Scholar 

  31. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol. 1999;163:5211–8.

    PubMed  CAS  Google Scholar 

  32. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;3:1073–81.

    Article  Google Scholar 

  33. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67:9518–27.

    Article  PubMed  CAS  Google Scholar 

  34. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331:1612–6.

    Article  PubMed  CAS  Google Scholar 

  35. Martignoni ME, Kunze P, Hildebrandt W, Kunzli B, Berberat P, Giese T, et al. Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia. Clin Cancer Res. 2005;11:5802–8.

    Article  PubMed  CAS  Google Scholar 

  36. Du Clos TW, Mold C. C-reactive protein: an activator of innate immunity and a modulator of adaptive immunity. Immunol Res. 2004;30:261–77.

    Article  PubMed  Google Scholar 

  37. Roxburgh CS, Platt JJ, Leitch EF, Kinsella J, Horgan PG, McMillan DC. Relationship between preoperative comorbidity, systemic inflammatory response, and survival in patients undergoing curative resection for colorectal cancer. Ann Surg Oncol. 2011;18:997–1005.

    Article  PubMed  CAS  Google Scholar 

  38. McMillan DC. An inflammation-based prognostic score and its role in the nutrition-based management of patients with cancer. Proc Nutr Soc. 2008;67:257–62.

    Article  PubMed  Google Scholar 

  39. McMillan DC. Systemic inflammation, nutritional status and survival in patients with cancer. Curr Opin Clin Nutr Metab Care. 2009;12:223–6.

    Article  PubMed  Google Scholar 

  40. Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006;83:735–43.

    PubMed  CAS  Google Scholar 

  41. Fearon KC, Voss AC, Hustead DS. Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am J Clin Nutr. 2006;83:1345–50.

    PubMed  CAS  Google Scholar 

  42. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, Grabowski K, Blachut K, Kustrzeba-Wojcicka I, et al. Acute-phase response proteins are related to cachexia and accelerated angiogenesis in gastroesophageal cancers. Clin Chem Lab Med. 2008;46:359–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

NBJ undertook this work while supported by a Clinical PhD Fellowship (CAF/06/24) from the Chief Scientist’s Office (CSO) of the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel B. Jamieson MRCS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamieson, N.B., Mohamed, M., Oien, K.A. et al. The Relationship Between Tumor Inflammatory Cell Infiltrate and Outcome in Patients with Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 19, 3581–3590 (2012). https://doi.org/10.1245/s10434-012-2370-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2370-y

Keywords

Navigation