Annals of Surgical Oncology

, Volume 19, Issue 9, pp 3116–3122 | Cite as

Bioluminescence Imaging Serves as a Dynamic Marker for Guiding and Assessing Thermal Treatment of Cancer in a Preclinical Model

  • Joyce T. Au
  • Lorena Gonzalez
  • Chun-Hao Chen
  • Inna Serganova
  • Yuman Fong
Translational Research and Biomarkers



Bioluminescence has been harnessed as a dynamic imaging technique in research. This is a proof of principle study examining feasibility of using bioluminescent proteins as a marker to guide therapeutic ablation.


Mesothelioma cancer cells (MSTO-Td) were transfected with a retroviral vector bearing firefly luciferase gene, plated in serial dilutions, and imaged to compare bioluminescence signal to cell number, determining threshold of bioluminescence detection. MSTO-Td cells were subjected to thermal treatment in a heated chamber; the bioluminescence signal and number of remaining live cancer cells were determined. Mice with MSTO-Td xenografts underwent electrocautery tumor ablation guided by bioluminescence imaging; bioluminescence signal and tumor size were monitored for 3 weeks.


MSTO-Td cells emitted a bright, clear, bioluminescence signal that amplified with the cell number (P < .001) and was detectable with as few as 10 cells in cell culture. Bioluminescence decreased in a dose-dependent fashion upon thermal treatment as temperature increased from 37 to 70 °C (P < .001) and as treatment duration increased from 5 to 20 min (P < .001). This correlated with the number of remaining live MSTO-Td cells (Pearson coefficient = 0.865; P < .001). In mice, the bioluminescence signal correlated with tumor size posttreatment and effectively guided the ablation procedure to completion, achieving 0 % tumor recurrence.


Bioluminescence imaging is a sensitive, real-time imaging approach; bioluminescence reporters such as firefly luciferase can assess and guide thermal treatment of cancer. This encourages research into bioluminescence imaging as a molecular technique with potential to target tumors via biomarkers and optimize thermal treatment procedures in a clinical setting.


  1. 1.
    Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol. 2000;174:323–31.PubMedGoogle Scholar
  2. 2.
    Lau WY, Leung TW, Yu SC, Ho SK. Percutaneous local ablative therapy for hepatocellular carcinoma: a review and look into the future. Ann Surg. 2003;237:171–9.PubMedGoogle Scholar
  3. 3.
    Timmerman RD, Bizekis CS, Pass HI, Fong Y, Dupuy DE, Dawson LA, et al. Local surgical, ablative, and radiation treatment of metastases. CA Cancer J Clin. 2009;59:145–70.PubMedCrossRefGoogle Scholar
  4. 4.
    de Wet JR, Wood KV, Helinski DR, DeLuca M. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA. 1985;82:7870–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Dothager RS, Flentie K, Moss B, Pan MH, Kesarwala A, Piwnica-Worms D. Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol. 2009;20:45–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Serganova I, Moroz E, Vider J, Gogiberidze G, Moroz M, Pillarsetty N, et al. Multimodality imaging of TGFbeta signaling in breast cancer metastases. FASEB J. 2009;23:2662–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Silberhumer GR, Brader P, Wong J, Serganova IS, Gönen M, Gonzalez SJ, et al. Genetically engineered oncolytic Newcastle disease virus effectively induces sustained remission of malignant pleural mesothelioma. Mol Cancer Ther. 2010;9:2761–9.PubMedCrossRefGoogle Scholar
  8. 8.
    El Hilali N, Rubio N, Martinez-Villacampa M, Blanco J. Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest. 2002;82:1563–71.PubMedGoogle Scholar
  9. 9.
    Klerk CP, Overmeer RM, Niers TM, Versteeg HH, Richel DJ, Buckle T, et al. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques. 2007;43:7–13, 30.Google Scholar
  10. 10.
    Sweeney TJ, Mailander V, Tucker AA, Olomu AB, Zhang W, Cao Y, et al. Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA. 1999;96:12044–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging. 2004;3:9–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH. Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia. 1999;1:303–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, et al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol. 2002;160:1143–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM, et al. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin Cancer Res. 2008;14:2295–302.PubMedCrossRefGoogle Scholar
  15. 15.
    Kelly KJ, Brader P, Woo Y, Li S, Chen N, Yu YA, et al. Real-time intraoperative detection of melanoma lymph node metastases using recombinant vaccinia virus GLV-1h68 in an immunocompetent animal model. Int J Cancer. 2009;124:911–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115:44–55.PubMedGoogle Scholar
  17. 17.
    Goldman SJ, Chen E, Taylor R, Zhang S, Petrosky W, Reiss M, et al. Use of the ODD-luciferase transgene for the non-invasive imaging of spontaneous tumors in mice. PLoS One. 2011;6:e18269.PubMedCrossRefGoogle Scholar
  18. 18.
    Lyons SK, Lim E, Clermont AO, Dusich J, Zhu L, Campbell KD, et al. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Res. 2006;66:4701–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS, et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood. 2003;101:640–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA. 2007;104:270–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA. 2005;102:12177–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Shah K. Current advances in molecular imaging of gene and cell therapy for cancer. Cancer Biol Ther. 2005;4:518–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu J, Wang Y, Qu X, Li X, Ma X, Han R, et al. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models. Opt Express. 2010;18:13102–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang G, Cong W, Durairaj K, Qian X, Shen H, Sinn P, et al. In vivo mouse studies with bioluminescence tomography. Opt Express. 2006;14:7801–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Brader P, Riedl CC, Woo Y, Ponomarev V, Zanzonico P, Wen B, et al. Imaging of hypoxia-driven gene expression in an orthotopic liver tumor model. Mol Cancer Ther. 2007;6:2900–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Sogawa C, Tsuji AB, Sudo H, Sugyo A, Yoshida C, Odaka K, et al. C-kit-targeted imaging of gastrointestinal stromal tumor using radiolabeled anti-c-kit monoclonal antibody in a mouse tumor model. Nucl Med Biol. 2010;37:179–87.PubMedCrossRefGoogle Scholar
  27. 27.
    Oude Munnink TH, Nagengast WB, Brouwers AH, Schröder CP, Hospers GA, Lub-de Hooge MN, et al. Molecular imaging of breast cancer. Breast. 2009;18 Suppl 3:S66–73.Google Scholar
  28. 28.
    Smith TA. Towards detecting the HER-2 receptor and metabolic changes induced by HER-2-targeted therapies using medical imaging. Br J Radiol. 2010;83:638–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Glunde K, Jacobs MA, Bhujwalla ZM. Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn. 2006;6:821–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Sega EI, Low PS. Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev. 2008;27:655–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011;38:55–69.PubMedCrossRefGoogle Scholar
  32. 32.
    Lindner U, Lawrentschuk N, Trachtenberg J. Image guidance for focal therapy of prostate cancer. World J Urol. 2010;28:727–34.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2012

Authors and Affiliations

  • Joyce T. Au
    • 1
  • Lorena Gonzalez
    • 1
  • Chun-Hao Chen
    • 1
  • Inna Serganova
    • 2
  • Yuman Fong
    • 1
  1. 1.Department of SurgeryMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Molecular Pharmacology and Chemistry ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations