Skip to main content

Advertisement

Log in

UHRF1 Promotes Cell Growth and Metastasis Through Repression of p16ink4a in Colorectal Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether ubiquitin-like with plant homeodomain and ring finger domains 1 (UHRF1) expression is upregulated in colorectal cancer (CRC), whether UHRF1 promotes CRC cell growth and migration and the underlying molecular mechanism.

Methods

UHRF1 protein expression was determined in 144 pairs of primary CRC and their corresponding adjacent nontumor tissues by immunohistochemistry with tissue microarrays. UHRF1 mRNA expression was assessed in 20 pairs of the above tissues and four colon cancer cell lines by quantitative reverse transcriptase-polymerase chain reaction. Associations of UHRF1 expression with demographic and clinicopathologic features were determined. Additionally, the effects of lentiviral-mediated RNA interference (RNAi) of UHRF1 on cell proliferation and migration, cell cycle and apoptosis, and the expression of p16ink4a and p21waf1/cip1 were investigated in CRC cell lines.

Results

UHRF1 was overexpressed in CRC tissues and cell lines. UHRF1 protein expression levels correlated with the presence of lymph nodes (P = 0.005), distal metastasis (P = 0.030), poor Dukes staging (P = 0.001), and absence of p16ink4a expression (P = 0.002). RNAi of UHRF1 inhibited proliferation and migration, and induced apoptosis and cell cycle arrest at the G0/G1 phase. Furthermore, RNAi of UHRF1 enhanced the expression of p16ink4a, but not p21waf1/cip1, in CRC cells.

Conclusions

UHRF1 expression is upregulated in CRC and is associated with the progression of CRC. Moreover, RNAi of UHRF1 decreases proliferation and migration but enhances apoptosis of CRC cells, with increased p16ink4a expression. UHRF1 promotes CRC growth and metastasis, likely by repressing p16ink4a, and thus it may be used as a biomarker or even a therapeutic target for CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Yang L, Parkin DM, Li L, et al. Time trends in cancer mortality in China, 1987–1999. Int J Cancer. 2003;106:771–83.

    Article  PubMed  CAS  Google Scholar 

  3. Hopfner R, Mousli M, Jeltsch JM, et al. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res. 2000;60:121–8.

    PubMed  CAS  Google Scholar 

  4. Unoki M, Nishidate T, Nakamura Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene. 2004;23:7601–10.

    Article  PubMed  CAS  Google Scholar 

  5. Sharif J, Muto M, Takebayashi S, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007;450:908–12.

    Article  PubMed  CAS  Google Scholar 

  6. Hashimoto H, Horton JR, Zhang X, Cheng X. UHRF1, a modular multi-domain protein, regulates replication-coupled crosstalk between DNA methylation and histone modifications. Epigenetics. 2009;4:8–14.

    Article  PubMed  CAS  Google Scholar 

  7. Bronner C, Achour A, Arima Y, Chataigneau T, Saya H, Schini-Kerth VB. The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther. 2007;115:419–34.

    Article  PubMed  CAS  Google Scholar 

  8. Unoki M, Brunet J, Mousli M. Drug discovery targeting epigenetic codes: the great potential of UHRF1, which links DNA methylation and histone modifications, as a drug target in cancers and toxoplasmosis. Biochem Pharmacol. 2009;78:279–88.

    Article  Google Scholar 

  9. Alhosin M, Sharif T, Mousli M, et al. Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J Exp Clin Cancer Res. 2011;30:41.

    Article  PubMed  CAS  Google Scholar 

  10. Compton CC, Greene FL. The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin 2004;54:295–308.

    Article  PubMed  Google Scholar 

  11. Beahrs OH. Colorectal cancer staging as a prognostic feature. Cancer. 1982;50:2615–7.

    PubMed  CAS  Google Scholar 

  12. Zlobec I, Terracciano L, Jass JR, Lugli A. Value of staining intensity in the interpretation of immunohistochemistry for tumor markers in colorectal cancer. Virchows Arch. 2007;451:763–9.

    Article  PubMed  CAS  Google Scholar 

  13. Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V, et al. Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology. 2005;129:1454–63.

    Article  PubMed  CAS  Google Scholar 

  14. Komuro Y, Watanabe T, Tsurita G, Muto T, Nagawa H. Evaluating the combination of molecular prognostic factors in tumor radiosensitivity in rectal cancer. Hepatogastroenterology. 2005;52:666–71.

    PubMed  CAS  Google Scholar 

  15. Moyer MP, Manzano LA, Merriman RL, Stauffer JS, Tanzer LR. NCM460, a normal human colon mucosal epithelial cell line. In Vitro Cell Dev Biol Anim. 1996;32:315–7.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao D, Keates AC, Kuhnt-Moore S, Moyer MP, Kelly CP, Pothoulakis C. Signal transduction pathways mediating neurotensin-stimulated interleukin-8 expression in human colonocytes. J Biol Chem. 2001;276:44464–71.

    Article  PubMed  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  18. Lorenzato M, Caudroy S, Bronner C, et al. Cell cycle and/or proliferation markers: What is the best method to discriminate cervical high-grade lesions? Hum Pathol. 2005;36:1101–7.

    Article  PubMed  CAS  Google Scholar 

  19. Unoki M, Kelly JD, Neal DE, Ponder BA, Nakamura Y, Hamamoto R. UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br J Cancer. 2009;101:98–105.

    Article  PubMed  CAS  Google Scholar 

  20. Unoki M, Daigo Y, Koinuma J, Tsuchiya E, Hamamoto R, Nakamura Y. UHRF1 is a novel diagnostic marker of lung cancer. Br J Cancer. 2010;103:217–22.

    Article  PubMed  CAS  Google Scholar 

  21. Arima Y, Hirota T, Bronner C, et al. Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA—damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells. 2004;9:131–42.

    Article  PubMed  CAS  Google Scholar 

  22. Jenkins Y, Markovtsov V, Lang W, et al. Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mo. Biol Cell. 2005;16:5621–9.

    Article  PubMed  CAS  Google Scholar 

  23. Hopfner R, Mousli M, Oudet P, Bronner C. Overexpression of ICBP90, a novel CCAAT-binding protein, overcomes cell contact inhibition by forcing topoisomerase II alpha expression. Anticancer Res. 2002;22:3165–70.

    PubMed  CAS  Google Scholar 

  24. Daskalos A, Oleksiewicz U, Filia A, et al. UHRF1-mediated tumor suppressor gene inactivation in nonsmall cell lung cancer. Cancer. 2011;117:1027–37.

    Article  PubMed  CAS  Google Scholar 

  25. Karagianni P, Amazit L, Qin J, Wong J. ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol. 2008;28:705–17.

    Article  PubMed  CAS  Google Scholar 

  26. Jin W, Chen L, Chen Y, et al. UHRF1 is associated with epigenetic silencing of BRCA1 in sporadic breast cancer. Breast Cancer Res Treat. 2010;123:359–73.

    Article  PubMed  CAS  Google Scholar 

  27. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127:265–75.

    Article  PubMed  CAS  Google Scholar 

  28. Esteller M, Gonzalez S, Risques RA, et al. K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol. 2001;19:299–304.

    PubMed  CAS  Google Scholar 

  29. Slebos RJC, Baas IO, Clement M, et al. Clinical and pathological associations with p53 tumour-suppressor gene mutations and expression of p21(WAF1/Cip1) in colorectal carcinoma. Br J Cancer. 1996;74:165–71.

    Article  PubMed  CAS  Google Scholar 

  30. Yang WC, Mathew J, Velcich A, et al. Targeted inactivation of the p21(WAF1/cip1) gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosa. Cancer Res. 2001;61:565–9.

    PubMed  CAS  Google Scholar 

  31. Tamm I, Schumacher A, Karawajew L, et al. Adenovirus-mediated gene transfer of P16INK4/CDKN2 into bax-negative colon cancer cells induces apoptosis and tumor regression in vivo. Cancer Gene Ther. 2002;9:641–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by grants from the PhD grant of Shanghai Jiaotong University School of Medicine (grant BXJ201137), the National High Technology Research and Development Program (863 Program) (grant 2009AA02Z118), and the National Basic Research Program of China (973 Program) (grant 2008CB517403). We thank Medjaden Bioscience Limited staff members for their help preparing the manuscript.

Conflict of Interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Long Qin MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Yang, YZ., Shi, CZ. et al. UHRF1 Promotes Cell Growth and Metastasis Through Repression of p16ink4a in Colorectal Cancer. Ann Surg Oncol 19, 2753–2762 (2012). https://doi.org/10.1245/s10434-011-2194-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-2194-1

Keywords

Navigation